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FOREWORD

An exploratory study to assess the feasibility of sending radioactive waste materials generated

by the projected nuclear power industry into space for disposal was conducted by the National

Aeronautics and Space Administration (NASA) and is summarized in two volumes: I - EXECUTIVE

SUMMARY and II - TECHNICAL SUMMARY. The study was performed at the request of the Atomic

Energy Commission (AEC) as part of a review of various storage and disposal concepts for nuclear

waste management.

The study was performed by personnel from various NASA centers, NASA Headquarters, and

the AEC. The various sections of the two volumes were written by members of the group and com-

piled by Robert E. Hyland of the NASA Lewis Research Center. The principal contributors and

their respective areas of contribution are as follows:

Robert E. Hyland ...................... Coordinator, package concept and reports
NASA Lewis Research Center

Robert Thompson ....................... Destinations, vehicles, and trajectories
NASA Lewis Research Center

Richard L. Puthoff ......................... Impact and postimpact conditions
NASA Lewis Research Center

Millard L. Wohl ......................... Shielding, impact, and fragmentation
NASA Lewis Research Center

Ruth N. Weltmann ............... ..................... Nuclear safety

NASA Lewis Research Center (Aerospace Safety Research and Data Institute)

John Vorreiter ..................................... Reentry shield
NASA Ames Research Center

Nathan Koenig ................................. Launch site and facilities

NASA Kennedy Space Center

Victor Bond ........................................ Trajectories

NASA Johnson Space Center

Gus Babb ...................................... Shuttle integration
NASA Johnson Space Center

Herbert Shaefer ............................... Nuclear safety, HQ monitor
NASA Headquarters

Thomas B. Kerr .................................... Nuclear safety
NASA Headquarters

Thaddeus J. Dobry ................................... Nuclear safety

Atomic Energy Commission

Robert W. Ramsey .............................. AEC/NASA coordinator

Atomic Energy Commission (Division of Waste Management and Transportation - Branch Chief)

The Physics International Company studied and performed tests on fragment impact effects on

spherical shells that simulated waste impact shells, and the Astronuclear Laboratory of Westing-

house Electric Corporation analyzed postimpaet temperatures and pressures within waste packages,
both under contract to NASA Lewis Research Center.

, Precedingpageblank





CONTENTS

Page

SUMMARY ........ ............................... 1

IN TRODU C TION ..................................... 2

RADIOACTIVE WASTE PROBLEM ........................... 3

CATEGORIES OF RADIOACTIVE WASTE ...................... 3

PROJECTED AMOUNT OF RADIOACTIVE WASTE GENERATION

IN THE UNITED STATES ............................. 3

CHARACTERISTICS OF RADIOACTIVE WASTE ................... 4

Fission Products .................................. 4

Actinides ...................................... 5

Half -Lives ..................................... 5

Relative Hazards .................................. 6

POTENTIAL SPACE DE STINATIONS FOR RADIOACTIVE

NUCLEAR WASTE DISPOSAL ............................ 6

BASIC CONSIDERATIONS ............................... 6

POTENTIAL DESTINATIONS ............................. 7

High Earth Orbits ................................. 7

Advantages .................................... 7

Disadvantage s .................................. 7

Solar Orbits ..................................... 8

Earth escape ................................... 8

Circular solar orbits .............................. 9

Solar orbit via Venus and Mars swing-bys ................... 11

Solar System Escape ................................ 12

Direct solar system escape ........................... 12

Solar system escape via Jupiter swing-by ................... 12

Solar Impact .................................... 13

Direct solar impact ............................... 13

Solar impact via Jupiter swing-by ........................ 13

Other Destinations ................................. 14

COMPARISON OF DESTINATIONS .......................... 14

POTENTIAL SPACE TRANSPORTATION VEHICLE

PERFORMANCE AND COST ............................. 15

BASIC CONSIDERATIONS .............................. 15

EXPENDABLE LAUNCH VEHICLE PERFORMANCE AND COST .......... 15

v Precedingpageblank



SPACE SHUTTLE/THIRD-STAGE PERFORMANCE AND COST ........... 16

Performance .................................... 17

Cost ......................................... 17

LAUNCH VEHICLE PERFORMANCE/COST COMPARISON ............. 18

MULTIPLE SPACE TUG CONFIGURATION PERFORMANCE AND COST ...... 19

SPACE TRANSPORTATION SYSTEM CONCLUSIONS ................ 20

NUCLEAR WASTE PACKAGING ............................ 21

GENERAL CONSIDERATIONS ............................ 21

ACCIDENT ENVIRONMENTS ............................. 21

Launch Pad and Launch Accident Environment .................. 21

Blast overpressure ................................ 22

Fragmentation .................................. 22

Fireball...................................... 22

Afterfire ..................................... 22

Reentry Environment in Case of an Aborted Mission ............... 22

Impact Environment ................................ 23

Postimpact Environment .............................. 23

PACKAGE I - ALL FISSION PRODUCTS IN SOLID MATRIX IN

CYLINDRICAL CONTAINERS ........................... 24

Description of Contents ............................... 24

Radiation Shielding ................................. 24

Impact Protection .................................. 25

Normal Operating Temperatures .......................... 25

Packaging Dimensions ............................... 25

Packaging Weight Ratios for Package I ....................... 26

Space Shuttle Launch Frequency for Disposal of Package I ............ 26

PACKAGE II - ACTINIDES WITH 0.1 AND 1 PERCENT OF FISSION

PRODUCTS ..................................... 27

Description of Contents .............................. 27

Radiation Shielding ................................. 28

Impact Protection ................................. 28

Overall Configuration with Reentry Shell ..................... 29

Single and multiple reentry packages ...................... 29

Reentry shell material .............................. 29

Overall package configuration .......................... 30

Package Equilibrium Temperature ........................ 30

Total Packaging Weight Ratio for Package IIBased on External Dose Rate . . . 31

Space Shuttle Launch Frequency for Disposal of Package II ........... 31

vi



PACKAGE HI - PURE ACTINIDES wrrH AND WITHOUT CURIUM ......... 32

Description of Contents ............................... 32

Overall Configuration for Package HI ...................... 33

Pure actinides with curium ........................... 33

Pure actinides with curium removed ...................... 33

Packaging Weight Ratios for Package HI - Pure Actinides ............ 33

Space Shuttle Launch Frequency for Disposal of Package HI ........... 34

REQUIREMENTS FOR WASTE PACKAGE INTEGRATION wrrH SPACE

VEHICLE SYSTEM .................................. 34

GENERAL CONDITIONS ............................... 34

NUCLEAR WASTE PACKAGE AND TUG OR TUG ALONE WITH SPACE

SHUTTLE .................................... 34

Mounting in Bay Compartment ........................... 34

Monitoring Requirements .............................. 35

Deployment ..................................... 35

Retrieval ...................................... 35

NUCLEAR WASTE PACKAGE WITH TUG ...................... 36

THERMAL REQUIREMENTS ..... , ....................... 36

On Ground ...................................... 36

In Flight ...................................... 36

GROUND SUPPORT REQUIREMENTS ......................... 37

GENERAL CONSIDERATIONS ............................ 37

FACILITIES ...................................... 37

Nuclear Waste Package Handling Facility ..................... 38

Nuclear Waste Package Transporter ..................... 38

Modification and Construction of Space Shuttle Base Requirements ....... 38

OPERATIONS ...................................... 39

GENERAL CONSIDERATIONS ............................ 39

LAUNCH AND GROUND OPERATIONS ASSUMPTIONS ............... 40

GROUND OPERATIONS ................................ 40

Ground Operations for Launch Vehicle ...................... 40

Ground Operations for Nuclear Payload ...................... 41

Recovery From Abort Near Launch Site ...................... 41

ASCENT OPERATIONS ................................ 41

ORBITAL OPERATIONS ............................... 42

Parking Orbit .................................... 42

Deployment of Nuclear Waste Package with Tug ................. 42

Orientation and Firing of Tug ........................... 42

vii



TRAJECTORY CONSIDERATIONS ........................... 43

SHUTTLE ASCENT .................................. 43

SELECTION OF PARKING (DEPLOYMENT) ORBIT ALTITUDE .......... 43

INTACT SPACE SHUTTLE ABORT .......................... 44

UNCONTROLLED ABORT DURING ASCENT PHASE ................ 44

UNCONTROLLED ABORT DURING ORBITAL MISSION PHASE ........... 45

NUCLEAR SAFETY CONSIDERATIONS ........................ 45

NUCLEAR SAFETY REQUIREMENTS ........................ 46

ACCIDENT MODEL .................................. 46

Ground Handling .................................. 47

Launch Pad Abort ................................. 47

High-Velocity Impact ................................ 47

Failure During Ascent ............................... 47

C rash Landing ................................... 48

Uncontrolled Reentry and Impact ......................... 49

Postimpact Conditions ............................... 49

ANALYTICAL RESULTS ............................... 49

Nuclear Waste Package Response ......................... 49

Overpressure ................................... 50

Fragments .................................... 50

Fireball ..................................... 50

Residual propellant fires ............................. 50

Atmospheric reentry ............................... 51

Impact ...................................... 51

After impact ............... : ................... 52

RECOVERY OF NUCLEAR WASTE PACKAGE ................... 52

NUCLEAR SAFETY CONCLUSIONS ......................... 53

COSTS FOR SPACE TRANSPORTATION SYSTEM .................. 53

SPACE TRANSPORTATION COSTS .......................... 54

Launch Costs .................................... 54

High Earth orbit ................................. 54

Solar system escape ............................... 55

Ground Facilities Costs .............................. 55

Other Support Costs ................................ 56

Total Spa<e Transportation Costs ......................... 56

ESTIMATE S OF SEPARATION, ENCAPSULATION, AND

PACKAGING COSTS ................................ 56

VIII



ESTIMATED TOTAL COSTS FOR PRE PARING WASTE,

PACKAGING, AND TRANSPORTATION ...................... 57

ECONOMICS ...................................... 58

ECONOMIC ASSUMPTIONS .............................. 58

EFFECT OF SPACE DISPOSAL OF RADIOACTIVE NUCLEAR WASTE

ON COST TO THE CONSUMER OF ELECTRIC POWER .............. 58

PERTURBATIONS ON COST TO THE CONSUMER .................. 59

Effect of Discount Rate and Time on Cost to Consumer .............. 59

Example 1 .................................... 59

Example 2 .................................... 60

Effect of Separation of Waste Material for Space Disposal ............ 60

CONCLUSIONS ..................................... 60

SPACE DESTINATIONS ............................... 61

TRANSPORTATION VEHICLE ............................ 61

WASTE PACKAGE DESIGN CONCEPT ........................ 61

NUCLEAR SAFETY .................................. 62

ECONOMICS ..................................... 62

APPENDIX - ACCIDENTAL EARTH IMPACT AND POSTIMPACT

ANALYSES AND EXPERIMENTAL RESULTS ....................

REFERENCES .....................................

63

67

ix





FEASIBILITYOFSPACEDISPOSALOF RADIOACTIVENUCLEARWASTE

II - TECHNICALSUMMARY

National Aeronautics and SpaceAdministration

Lewis Research Center

SUMMARY

The feasibilityof transporting radioactive waste from nuclear powerplants into space

for ultimate disposal was investigated at the request of the Atomic Energy Commission

(AEC) as a NASA in-house effort. The investigationis part of a broad AEC study of

various concepts for long-term storage or disposal of radioactive waste. Both expend-

able and reusable space vehicles were considered for the space disposal missions. The

Space Shuttle in conjunction with either reusable or expendable space tugs provided the

lowest cost per payload for delivery to the various destinations investigated.

The choice of space destinations was narrowed to high Earth orbits, solar orbits,

and solar system escape. The latterdestinationappears to be the most desirable and

was found to be economically and technically feasible. The nuclear waste packages were

designed to prevent loss of radioactive waste in accident environments. Several compo-

sitions of radioactive nuclear waste were considered: fission products, and actinides

containing various percentages of fission products. The long-lived radioactive isotope

group referred to as actinides (heavy isotopes, with atomic numbers above 89), which

could be a separate part of the waste, received the greatest attention. The disposal of

only this relatively small quantity of the most dangerous components of nuclear waste

appears to be cost effective.

The results of this exploratory study indicate that disposal into space of the long-

lived actinides of nuclear waste appears feasible, from both the economic and safety

viewpoints. (Space disposal of all fission products does not appear practical. ) The

transportation costs for ejecting the actinides out of the solar system would represent

less than a 5-percent increase in the consumer bill for electric power generated by nu-

clear powerplants. Such missions involve certain risks, however small, which would

have to be balanced against the benefits to be derived from removing the dangerous long-

lived radioactive waste from man's environment and relieving future generations from

the responsibility of protecting themselves against our radioactive waste. Firm plans for

such nuclear disposal missions must be based on more study, development, and testing.

The major components and sequence of events for a typical waste disposal mission

to solar escape are presented in figure 1.



INTRODUCTION

The Atomic Energy Commission (AEC) and the National Aeronautics and Space

Administration (NASA), and others have suggested that radioactive nuclear wastes could

be transported into space for disposal, thereby eliminating the long-term storage of such

wastes on Earth. This method potentiallyresolves the difficultiespresented by con-

trolled Earth storage of wastes that have decay half-lives measured in thousands of years.

This preliminary study was performed by NASA at the request of the AEC to explore

the feasibility of transporting several compositions of radioactive waste into space for

disposal and to assess the safety and economic implications of such an endeavor. The

results will be factored in with other studies concerned with disposal and/or storage of

radioactive waste to enable the AEC to compare all such methods for future planning.

Specifically, this study focused on the technical feasibility, costs, and safety of

space disposal of several representative radioactive wastes from nuclear electric power-

plants in the United States.

Launch vehicle performance (Saturn V, Titan IIIE/Centaur, and the reusable Space

Shuttle) was compared to determine the possible payload weights to various destinations.

The destinations include high Earth orbits, solar orbits, solar impacts, and solar sys-

tem escape. Preliminary designs of nuclear waste packages were made. These pack-

ages must provide radiation shielding and protection during all phases of launch, flight

aborts, reentry conditions following aborts, and reencounters and impacting on Earth

following uncontrolled reentry. Several representative radioactive waste compositions

were screened early in the study so that efforts could concentrate on the waste composi-

tion most feasible for space disposal. These screening studies are reported in refer-

ences 1 and 2. The two basic waste materials considered were fission products, which

are wastes created by fissioning the nuclear fuel, and actinides, which are heavy metal-

lic elements generated by neutron absorption in elements above actinium. A preliminary

safety analysis of the packages was performed, and a cost estimate of space transporta-

tion to selected destinations was made.

The depth of the study varied in different portions of the study. The study of launch

vehicle performance was limited to vehicles in operation or in the planning stage. The

study does point out where improvement could be made that could result in a more effec-

tive delivery system. Comparisons between expendable and reusable vehicles are dis-

cussed. The choice of destinations excludes landing on planets and satellites for several

reasons including the possibility of contamination and the extra energy required for soft

landings. A detailed discussion of vehicle destinations and payloads is given in refer-

ence 3.

It was not intended to establish any single launch system, destination, or package

design for space disposal of radioactive nuclear waste but merely to determine whether

or not such an approach is feasible and to appraise what problems might be encountered.



RADIOACTIVE WASTE PROBLEM

As nuclear powerplants are beginning to be used to generate electrical energy, there

has begun a corresponding buildup of radioactive waste. Most of the isotopes in the

waste decay or return to a stable energy level in a short time. However, some require

years, and there are some which require hundreds of thousands of years. As our nuclear

power industry increases, so does the radioactive waste.

According to the AEC (ref. 4), all radioactive waste shall be handled, stored, or

disposed of so that it will neither endanger the health and safety of personnel closely

involved with it or the public nor have an adverse impact on man's environment or on the

ecology.

CATEGORIES OF RADIOACTIVE WASTF

Many different radioactive wastes result from the fissioning process and the handling

of radioactive material. This study does not address the feasibility of space disposal for

all waste compositions but has selected representative wastes. The term radioactive

waste as used in this report is defined basically as those nuclides or isotopes remaining

in the waste after the spent fuel elements from nuclear electric powerplants have been

processed. These wastes fall into two main categories: (1) fission products, such as

those listed in table 1, which are radioactive isotopes created in the fission process;

and (2) the actinide isotopes, which result from neutrons being absorbed in the fuel atoms

(uranium and plutonium) without fissioning and thus forming heavier isotopes which are

radioactive. The actinide waste was assumed to contain small percentages of fission

products as a result of incomplete separation processes. No actinides were considered

to remain in the fission product waste. These then were the basic categories of radio-

active waste that were considered for the study. This does not mean that other cate-

gories of isotopes could not be considered. It is merely a representative range both in

quantity and in type of radioactive waste.

PROJECTED AMOUNT OF RADIOACTIVE WASTE GENERATION IN

THE UNITED STATES

The amount of radioactive waste was based on projections of nuclear electric power

generation to the year 2000 (ref. 5). The estimated amounts are shown graphically in

figure 2. The amount of actinides (with the uranium removed) was based on an average

of 30 kilograms remaining in the waste for every 1000 megawatt-years of electrical



power. The figure showsthat by 1985a total of 295 metric tons of fission products and
40 to 45metric tons of actinides wouldbe generated per year. The projections are based
predominantly on the light-water reactors (LWR) and somehigh-temperature gas-cooled
reactors (HTGR)until about 1985. The liquid-metal-cooled fast-breeder reactors
(LMFBR) were projected to come into useabout this time and generate the bulk of the
nuclear power by the year 2000.

Figure 3 showsthe accumulation of both the fission products and the actinides. By
the year 2000, the nuclear power industry will have ge_eratedapproximately 9000metric
tons of fission products, from all types of reactors, and 1200metric tons of actinides.

CHARACTERISTICS OF RADIOACTIVEWASTE

Fission Products

Fission products are radioactive isotopes created by splitting the atoms in the fis-
sioning process. The amounts producedin a representative LWR were obtainedfrom
reference 6 and are presented in tables 1 to 3. These tables indicate (1) the amount of
each isotope remaining in the waste after a metric ton of fuel from a light-water-
moderated reactor is reprocessed, (2) the radioactive decay in curies (a measure of a
quantity of radioactive material with 3.7><1010disintegrations per sec), and (3) the ther-

mal power in watts producedby each isotope. The values presentedare for various
times after removal from the reactor from 90 days to 1000years. The time period of
interest for this studywas 10years (3652days). That is, it was assumedthat the ma-
terial was allowed to decay fo:- 10years prior to being transported into space. This
selection was strictly arbitrary.

For some isotopes, 10years would be enoughtime to reduce their radioactivity to
safe levels. For others, suchas strontium-90, ruthenium-106, antimony-125,
cesium-134, cesium-137, and promethium-147, 10years is not sufficient, andthey still
wouldbe large contributors to the radioactivity and heat sources in the waste material
packagedfor spacedisposal. All fission products were consideredfor spacedisposal
regardless of their decaying process or their hazardouseffect on man. They were as-
sumedto be prepared in a solidified matrix for packagingand spacedisposal. The
methodsof packagingand solidification are discussed in the section NUCLEAR WASTE

PACKAGING (p. 21 ff). It was further assumed that the fission product waste could be

processed so that it would not contain any measurable amounts (parts per billion) of

actinides. This assumption was based on the results presented in reference 7.



Actinides

The second category of radioactive material considered was the actinides. Acti-

nides are not fission products but are formed through neutron absorption in the nucleus

of heavy isotopes, such as uranium and plutonium, which does not cause fissioning (split-

ting) of the nucleus. Instead, a new isotope is formed which can in turn absorb addi-

tional neutrons, so a variety of heavy isotopes are formed. These isotopes are referred

to as actinides since they are above actinium in the periodic table. For a given type of

nuclear fuel and reactor, a distribution of these actinides can be obtained. Examples of

these distributions are shown in tables 4 to 6 for the LWR's and in tables 7 to 9 for the

LMFBR's. These tables show the masses, radioactivity (in curies), and thermal power

(in watts) per metric ton of nuclear fuel after the spent or used fuel elements are pro-

cessed. There is considerably less material to be disposed of than in the case of the

fission products. Again the assumption was that the waste would be held for 10 years

prior to space transportation. Since the actinides do not decay as rapidly as many of the

fission products, a 10-year period has a much smaller effect on both the radioactivity

level and the thermal power.

The actinide waste was considered to be free of all uranium isotopes but to contain

small percentages of the fission products. The various waste compositions are shown in

table 10, along with the radioactivity and thermal power per gram of mixed waste. The

amount of actinides to be disposed of when the uranium has been removed is shown in

figures 2 and 3. The method of packaging is discussed in the section NUCLEAR WASTE

PACKAGING (p. 21 ff).

Half -Lives

As previously noted, fission products and actinides are formed differently. They

also decay radioactively at different rates. A measure of the decay rate is called the

hag-life, the time in which one-half of the radioactive species will decay to a lower or

stable energy state. Several of the isotopes with long half-lives, from both the fission

products and the actinide group, are listed in table 11. Basically, the fission products

decay by emitting a negative electron (beta) from the nucleus, although a few decay by

emitting gamma rays. The actinides generally decay by emitting an alpha particle

(helium nucleus) from the nucleus of the isotope, and again some decay by emitting

gamma rays. In addition to the alpha decay processes in the actinides, some of the iso-

topes give off neutrons spontaneously, similar to uranium. All these particles or rays

of energy are hazardous to man and must be isolated from him. As a rule of thumb, the

activity would be reduced to less than 1 percent in seven half-lives (i. e., 2-7 = 0.008).



Relative Hazards

Each isotope has a different level of radioactivity (curies) and a different quantity.

The effects of radioactive isotopes on man have been discussed for some time and, in

general, the total effect is not known. In order to obtain a relative hazard factor for

some of the isotopes, the maximum permissible body doses presented in reference 8

were used. This does in no way infer that these are the present acceptable levels. For

the isotopes with the longer half-lives listed in table 11, the accumulated doses, based on

the permissible body dose and the amount of material generated to the year 2000, are

presented in table 12. The biggest contributors appear to be strontium in the fission

products and americium and curium in the actinides, although all the isotopes represent

large doses. More information on relative hazards can be found in reference 9.

POTENTIAL SPACE DE STINATIONS FOR RADIOACTIVE

NUCLEAR WASTE DISPOSAL

BASIC CONSIDERATIONS

The space destinations considered in this study include Earth orbits, solar orbits,

solar system escape, and solar impact. The mission requirements and the relative ad-

vantages and disadvantages for each destination are discussed. The space destinations

are discussed in the order of increasing energy requirement. All launches are assumed

to occur from the Eastern Test Range (ETR), Kennedy Space Center, in an easterly di-

rection. For comparison purposes, it is assumed that the launch vehicle first enters a

low circular Earth parking orbit, although this is not always necessary nor advantageous.

After parking in this orbit, the launch vehicle's upper stage or stages inject the waste

package towards its final destination. Mission energy is characterized by the mission

AV requirement, which is defined as the sum of all the velocity increments that the

launch vehicle system has to provide after reaching low Earth orbit. In some cases the

launch system alone can place, or inject, the waste package towards its final destina-

tion. In other cases the waste package, after separation from the launch system, re-

quires subsequent trajectory (midcourse) corrections or propulsion in order to reach its

destination. In these cases the waste package becomes an active spacecraft requiring

propulsion, guidance, control, and communications systems. These requirements are

pointed out where needed. The potential destinations are summarized in table 13, and

the more promising ones are depicted in figure 4.



POTENTIAL DE STINATIONS

High Earth Orbits

To achieve high circular final Earth orbits starting from a low circular parking or-

bit, two propulsion maneuvers are required. The first maneuver is made in the parking

orbit and places the payload on an elliptical transfer orbit. After the payload coasts

along the transfer orbit to the desired final altitude, the second maneuver is made to

circularize the final orbit. Both these maneuvers are expected to be performed by the

launch system' s upper stage.

In the event of a propulsion failure after reaching low Earth orbit but prior to final

placement into high Earth orbit, corrective action can be taken. The resulting orbit

would have an adequate lifetime (several months) so that a second launch could be made

to rendezvous with the waste package. The waste package would then either be sent into

its final orbit or retrieved. This discussion also applies to other destinations if the

propulsion failure were to occur before Earth-escape velocity was reached.

It is not yet clear which orbit altitudes would be acceptable for the disposal of nu-

clear waste. Orbit lifetime is a primary factor. Orbit lifetimes of a million years or

longer may be required if extremely long-half-lived wastes are to be disposed of into

space. At reasonably high orbit altitudes, above several thousand kilometers, atmo-

spheric drag is negligible; but other perturbations such as solar pressure and solar,

lunar, and planetary gravitational perturbations must be considered. Orbits near the

Moon must be avoided to minimize lunar perturbations. High-traffic regions or orbits

important from a science or applications point of view (such as synchronous orbit alti-

tude and some lower altitudes) should not be chosen. Therefore, probably the best

choice for high Earth orbits would be those orbits lying between synchronous orbit alti-

tude and the Moon. However, such orbits have the highest AV requirement of the high

Earth orbits, of the order of 4.11 kilometers per second.

Advantages. - The advantages of high Earth orbit are as follows:

(1) The AV required is relatively low in comparison with some of the other desti-

nations.

(2) The waste package could conceivably be retrieved at a later date either to re-

cover the waste material or to remedy some unforeseen problem.

(3) There is a launch opportunity any day.

(4) The waste package could be passive, requiring no guidance or propulsion capa-

bility since the second propulsive burn is performed by the launch system's upper stage.

Disadvantages. - High Earth orbits present the following disadvantages:

(1) The stability of high Earth orbits and hence orbit lifetime over a long period of

time (of the order of a million years, which may be required for some of the waste to



decay sufficiently) is not well understood. To date, the complexity of the multipertur-

bation problem precludes rigorously verifying the stability of these orbits over many

thousands of years.

(2) There is no assurance of the integrity of the relatively hot waste package when it

is exposed to the space environment over these long periods of time.

(3) Eventually, the waste packages will be randomly located within a belt around the

Earth. Gravitational perturbations cause orbits of the waste packages to precess, thus

producing variations in orbits in this belt. Future planetary spacecraft would regularly

penetrate this belt. However, because of the wide spacing between waste packages at

such high placement altitudes, the probability of a collision would be extremely remote.

Since neither orbit stability nor waste package integrity are well understood (for

times of the order of a million years), high Earth orbits cannot be considered a perma-

nent disposal site. Unless further studies can resolve these problems, Earth orbits

should be considered only as a temporary (hundreds or a few thousand years) storage

site requiring further action at a later date.

Solar Orbits

The solar orbits considered in this study are those achievable with relatively low

AV's (table 13). These orbits include (1) solar orbits achievable by injecting the waste

package to Earth-escape velocity or slightly beyond, (2) circular solar orbits slightly

inside or outside the Earth's orbit around the Sun achievable by additional propulsion

after Earth escape, and (3) solar orbits achievable by swinging by Mars or Venus.

Earth escape. - The simplest method for achieving a solar orbit is to have the launch

system inject the waste package to Earth-escape energy. This can be done with a single

propulsive burn from Earth orbit with a AV of approximately 3.23 kilometers per sec-

ond. The waste package would then be separated from the launch system and after escap-

ing the Earth's gravitational field would be in an orbit around the Sun. The waste pack-

age would be in essentially the Earth's orbit around the Sun but in a different angular

position.

With the waste package in this orbit, there is a high probability of the waste package

reencountering the Earth at some future time. Because of inherent limitations on injec-

tion accuracy and long-term gravitational perturbation effects - principally from the

Earth, the waste package could not be maintained at a fixed position from the Earth. As

a result of these effects the waste package would tend to drift with respect to the Earth,

and preliminary calculations indicate a high probability of reencountering the Earth with-

in a few thousand years or less.

A better approach would be to provide somewhat more hV than required for Earth

escape (an additional _V of approximately 0.42 km/sec), so that the waste package



would be in a slightly elliptic solar orbit with a small inclination to the ecliptic plane

(plane of the Earth's orbit around the Sun). Initially, the orbit of the waste package

would intersect the Earth's orbit at only one point. With time, planetary gravitational

effects would tend to precess the orbit of the waste package with respect to the Earth's

orbit, making an encounter even less likely. Preliminary calculations indicate that such

is the case at least for a few thousand years.

Advantages: The advantages of an Earth-escape solar orbit are as follows:

(1) Of all the mission destinations or orbits considered, except for some Earth

orbits, Earth-escape solar orbit requires the lowest ZIV. The AV required is approx-

imately 3.65 kilometers per second, which is slightly more than that required to reach

Earth-escape velocity.

(2) Only a single propulsive phase from low Earth orbit is needed.

(3) There is a launch opportunity any day.

(4) The waste package could be passive, requiring no active spacecraft systems.

Disadvantages: Earth-escape solar orbit presents the following disadvantages:

(1) There is no assurance that the waste package will not reencounter the Earth

after a few thousand years.

(2) There is an abort gap past Earth-escape velocity. If the launch vehicle should

fail after reaching Earth-escape velocity, the waste package would be left in an un-

planned solar orbit with subsequent Earth reencounter possibilities. With current launch

vehicle technology, it would be impractical to recover the waste package from these

orbits.

There is no assurance that trajectories can be developed (and demonstrated analy-

tically) which eliminate the possibility of a reencounter with Earth for times of the order

of a million years. Because of this uncertainty, Earth-escape solar orbit cannot be es-

tablished as a proven, acceptable destination at this time.

Circular solar orbits. - In order to provide a positive separation between the orbit

of the waste package and the orbit of the Earth, the waste package could be placed in a

nearly circular solar orbit, either inside or outside the Earth's orbit about the Sun.

These circular orbits should be either inside 0. 983 AU (astronomical unit) or outside

1. 071 AU (the perihelion and aphelion distances of the Earth's elliptical orbit) to ensure

that the waste package does not collide with the Earth. There is an incentive, however,

for going no further than necessary since the required AV increases with increasing

distance from the Earth's orbit. For comparison purposes, a final orbit radius of

0.9 AU, which is inside the Earth's orbit, is used in this study. Starting from Earth

orbit, two propulsive burns are required to reach the desired 0.9-AU circular solar

orbit. The first burn requires a 3.3-kilometer-per-second AV to inject the waste

package to slightly past Earth-escape energy. After escaping from the Earth the waste

package is in an elliptical solar transfer orbit having the desired perihelion but with an

aphelion still at the distance of the Earth's orbit from the Sun. The second burn adds
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0.81 kilometer per second and circularizes the orbit. This burn is performed by

another propulsion stage upon reaching perihelion after approximately a 6-month coast.

Advantages: The advantages of circular solar orbits are as follows:

(1) The AV required is low in comparison with some of the other destinations.

For the 0.9-AU circular solar orbit, a total AV of 4.11 kilometers per second is re-

quired.

(2) There is a launch opportunity any day.

Disadvantages: Circular solar orbits present the following disadvantages:

(1) The problem of guaranteeing the stability of solar orbits for times of the order

of a million years is unresolved, generally for the same reasons given for Earth-escape

and high Earth orbits. Presumably, the final orbit could be placed sufficiently far from

the Earth's orbit to preclude a subsequent collision with the Earth over the times re-

quired.

(2) There is an abort gap past Earth-escape velocity. (i. e., The package could be

left in an unplanned solar orbit with possible Earth encounter in future and would be un-

recoverable with present vehicles. )

(3) In addition to the launch system, another propulsion system, as well as guidance,

control, and communications systems, is required to perform the second burn. It is

impractical to accomplish this burn with the launch system because of the long coast

phase. This disadvantage could be diminished by performing the second burn for circu-

larization with a simple spin-stabilized, solid rocket motor.

(4) If the circularization burn should fail, the waste package would be left in an ellip-

tic solar orbit, intersecting the Earth's orbit near aphelion. For these cases there is a

high probability that the payload will eventually reencounter the Earth. This probability

can be reduced by using departure trajectories similar to those suggested earlier for the

Earth-escape case.

The integrity of the waste package is an important consideration for this mission be-

cause its possible disintegration over long periods of time can influence the choice of an

interior or exterior orbit. If the waste package should disintegrate, the Poynting-

Robertson effect will tend to draw the smaller fragments into the Sun. If part of the

waste package should vaporize, the solar wind could tend to move some of the material

out from the Sun. If the integrity of the waste package cannot be guaranteed over a

long time period, these and other effects will have to be evaluated, not only in making the

selection of orbit location, but also to establish the ultimate destinations of the waste

material.

If the integrity of the package can be determined and if the stability of the circular

solar orbits (near Earth) can be established, circular solar orbits can be considered as

a possible disposal destination. In addition, further study is required to evaluate the

consequences of possible failure situations.
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Solar orbit via Venus and Mars swing-bys. - Another method for achieving solar

orbits that do not cross the Earth's orbit is to swing by another planet, using the gravi-

tational attraction of that planet to change the initial swing-by trajectory. The resulting

trajectory does not cross the Earth's orbit; however, it will periodically cross the

swing-by planet's orbit. Both Mars and Venus swing-bys can be achieved with ,xV's

only slightly higher than for Earth escape. The total AV is the sum of two AV's. The

first AV is performed by the launch sytem and injects the payload into a planet swing-

by trajectory. The second AV is performed by another propulsion system after the

planet swing-by and places the waste package into the desired solar orbit. This second

maneuver is performed to prevent a subsequent encounter with the swing-by planet. The

total AV for either a Venus or Mars swing-by mission is approximately 4.11 kilometers

per second.

Advantages: The advantages of a Venus or Mars swing-by mission are as follows:

(1) The total AV required for either mission is relatively low compared with those

required for some of the other destinations.

(2) With a properly oriented swing-by the trajectory can be altered so that the re-

sulting orbit will no longer cross the Earth's orbit.

Disadvantages: Venus and Mars swing-by missions present the following disad-

vantsaes:

(I) The launch opportunities are limited. A launch opportunity to Venus occurs only

once every 19 months and to Mars about once every 26 months. The duration or "width"

of each of these launch opportunities, calledthe launch window, can be about 3 to 4

months without major increases in injection AV (the wider the launch opportunity, the

higher the required injection AV).

(2) The waste package will require a midcourse trajectory correction system (with

currently achievable injection accuracies) to ensure achievement of a proper swing-by

position at the swing-by planet.

(3) An additional propulsion system is required to prevent a subsequent encounter

with the target planet. This propulsion system and associated systems must perform

reliably after a long coast phase.

(4) The problems of long-time stability of the solar orbit and containment system in-

tegrity are unresolved, although these problems would be less important than for the

previously discussed destinations which are closer to Earth.

(5) There is abort gap past Earth-escape velocity. (i. e., The package could be left

in unplanned solar orbit with possible Earth encounter in the future and would be unre-

coverable with present vehicles. )

Launch opportunities for either a Venus or Mars swing-by appear to be too limited

to effectively support the anticipated number of launches required, as discussed in the

section NUCLEAR WASTE PACKAGING. Such an operation would be expensive in terms
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of the required SpaceShuttle fleet size, the required number of launch facilities, and use

of ground crews. (For example, the reusable Space Shuttle is expected to have a two-

week turnaround time between launches. ) These swing-by missions offer no outstanding

advantages over the 0.9-AU solar orbit mission, which can be launched on any day.

Solar System E scape

Since both Earth orbit and solar orbit destinations involve uncertainties regarding

long-time orbit stability and containment system integrity, solar system escape and solar

impact should also be considered as possible waste package destinations. Of the two, it

takes less energy (table 13) to escape the solar system, and this case is discussed first.

Direct solar system escape. - Solar system escape can be achieved directly with a

single propulsion burn from low Earth parking orbit (fig. 4) with all the propulsion and

guidance provided by the launch vehicle. There is a small variation in injection AV,

depending on the launch day. The most efficient trajectories are those in or near the

ecliptic plane, and consequently the waste package would traverse the asteroid belt.

It would take only about 20 years for the waste package to reach the mean orbital distance

of Pluto, but there is no difficulty in targeting the trajectory to miss the outer planets.

And it would take over a million years ior it to reach the nearest stars. Thus, except

for its high AV requirement, solar system escape is the most attractive destination

discussed thus far.

Advantages: The advantages of direct solar system escape are as follows:

(1) The waste package is removed from the solar system.

(2) The waste package can be passive and requires no additional propulsion or

astrionics systems.

(3) There is a launch opportunity any day.

Disadvantages: Direct solar system escape presents the following disadvantages:

(1) An 8.75-kilometer-per-second AV is required. This is high in comparison with

the AVis required for high Earth orbits and solar orbits.

(2) There is an abort gap past Earth-escape velocity.

Solar system escape via Jupiter swing-by. - Solar system escape can be achieved

with a properly designed swing-by of Jupiter using a single propulsion phase from low

Earth orbit. As a result of using a Jupiter swing-by, the AV required to achieve solar

escape energy is somewhat less than that required for a direct solar system escape mis-

sion.

Advantage: The advantage of the Jupiter swing-by mission, as with direct solar sys-

tem escape, is that the waste package is removed from the solar system.

Disadvantages: The Jupiter swing-by mission presents the following disadvantages:
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(1) The AV required is approximately 7.01 kilometers per second, which is still

high in comparison with some of the other destinations.

(2) The launch opportunity is limited, occurring only once every 13 months with per-

haps a 60- to 90-day launch window.

(3) A midcourse trajectory correction capability is needed, as was the case for the

Venus and Mars swing-bys.

(4) There is an abort gap past Earth-escape velocity.

The Jupiter launch opportunity is too limited to support effectively the anticipated

number of launches required. In general, the Jupiter swing-by could be more restric-

tive than the Mars and Venus swing-bys. It would be simpler to use a direct solar sys-

tem escape, even though the AV is some 1.74 kilometers per second higher than for

the Jupiter swing -by.

Solar Impact

A solar impact is possible either directly or indirectly via a Jupiter swing-by to turn

the trajectory into the Sun. However, direct solar impact cannot be achieved with cur-

rent launch vehicles. Again the purpose of using a Jupiter swing-by is to reduce the AV

requirement.

Direct solar impact. - Direct solar impact can be achieved with a single propulsion

maneuver out of a low Earth orbit, with all the propulsion and guidance provided by the

launch system. The required AV must be provided by the launch system to cancel the

Earth's orbital speed about the Sun, so that the waste package "falls into" the Sun. For

a direct impact_ a AV of approximately 24.08 kilometers per second is required. For

grazing impact into the edge of the Sun the AV requirement is reduced to about 21.34

kilometers per second. For this mission the AWs required are far beyond the capa-

bility of current launch systems, and therefore it is considered impractical.

Advantages: The advantages of solar impact are as follows:

(1) The waste package is destroyed.

(2) The waste package can be passive.

(3) There is a launch opportunity any day.

Disadvantages: Direct solar impact presents the following disadvantages:

(1) The AV required is extremely high.

(2) There is an abort gap past Earth-escape velocity.

(3) The waste package would probably burn up prior to reaching the SUn, and its con=

tents could be scattered in space.

Solar impact via Jupiter swing-by. - Using a single propulsive maneuver from a low

Earth parking orbit and a Jupiter swing-by to achieve a solar impact requires a AV
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appreciably less than that for a direct solar impact. For this mission the AV re-

quired is 7.62 kilometers per second.

Advantage: The advantage of the Jupiter swing-by mission, as with direct solar im-
pact is that the waste package is destroyed.

Disadvantages: Solar impact via Jupiter swing-by presents the following disad-

vantages

(1) The AV is still high in comparison with those required for some of the other

destinations.

(2) The launch opportunity is limited, occurring only once every 13 months with per-

haps a 30- to 60-day launch window.

(3) A midcourse trajectory correction capability is needed, which increases mission

complexity.

(4) There is an abort gap past Earth-escape velocity.

The AV required for this case is about I. 13 kilometers per second less than that

required for a direct solar system escape mission. Nevertheless, the Jupiter launch

opportunity is too limited to support effectively the high launch rates expected for waste

disposal missions, and it would appear simpler to use the direct solar escape mission.

Other Destinations

Many other space destinations in addition to the ones discussed have been suggested.

Examples include depositing the waste packages on the Moon, on planets, in planetary

orbits, on asteroids, and at Lagrangian equilibrium points. These destinations were not

considered in this study although in some cases they could warrant further investiga-

tion. The general arguments against these destinations include the following:

(1) The regions are unexplored and/or are of scientific interest.

(2) Some of the regions could be of future value from an applications standpoint.

(3) Launch opportunities are limited.

(4) Deep-space propulsion is required and in many cases the retropropulsion AV's

are high.

COMPARISON OF DE STINATIONS

As a summary of the destinations discussed, table 13 lists the typical AV require-

ments for the various missions and their principal advantages and disadvantages. The

zlV's shown are representative for each destination, although there will be some varia-

tion depending on the particular launch opportunity and the details of the mission profile.
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The _V for high Earth orbits is an upper value for orbits between synchronous and lunar

orbit altitudes. The Earth-escape AV includes some provision for additional AV in an

effort to minimize the probability of a subsequent Earth reencounter as was previously

discussed. For the other solar orbits an additional AV is required to prevent the waste

package from encountering any planet. The term "passive waste package" implies that

the package will require no special space propulsion or midcourse corrections and thus

no associated astrionics systems. The abort possibility past Earth-escape velocity (re-

ferred to as the abort gap) is a disadvantage associated with all destinations beyond the

Earth.

The conclusions reached thus far indicate the remaining candidate mission destina-

tions are high Earth orbits, solar orbits (near Earth), and direct solar system escape,

as shown in figure 4. The payload capabilities of possible launch systems for each candi-

date mission destination are discussed in the next section.

POTENTIAL SPACE TRANSPORTATION VEHICLE PERFORMANCE AND COST

BASIC CONSIDERATIONS

Only large current and planned launch vehicles have been considered in this study.

They are shown in figure 5. The Titan IIIE/Centaur is the expendable booster that will

launch the 1975 Viking mission to Mars. The Saturn V is the three-stage expendable

Apollo booster. Its two-stage version has been used to launch S_ylab. The Space

Shuttleis primarily reusable and is to be operational in 1980. Itis planned as a replace-

ment for virtuallyall the nation's space boosters in operation today.

One of the most important factors in assessing the feasibilityof space disposal of

nuclear wastes is cost. This section considers the space transportation cost, which

consists of the vehicle launch and operations costs. These data can be used for com-

parative purposes for preliminary determination of the best launch vehicles and the most

promising mission destinations. However, the totalcost of space disposal will have to

include the cost of separating and concentrating the waste material, the cost of trans-

porting the nuclear waste and handling itat the launch site, and the cost of the flightcon-

tainment system and itsassociated flightsystems.

EXPENDABLE LAUNCH VEHICLE PERFORMANCE AND COST

Performance and cost data for the Titan HIE/Centaur and the Saturn V are listed in

table 14 for high Earth and solar orbits and for solar system escape. Performance data
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are basedona due-East launchfrom ETR into a 185-kilometer parking orbit. The upper
stageof the launchvehicle provides the AV needed to accelerate the payload to higher

energies from the parking orbit. Typical AV requirements for the selected destina-

tions are shown in the table. Actual AV's will vary somewhat depending on the specific

mission design. The direct solar impact mission (24.08 km/sec) is not shown because

it is well beyond the capability of current launch vehicles.

The costs of the expendable launch vehicles depend greatly on the use rate. The

Tital IIIE/Centaur cost is about $27 million at a production rate of four per year. At the

higher launch rates expected for space disposal of radioactive waste, the costs would be

expected to be considerably lower. For this study, it is assumed that the cost of the

Titan IIIE/Centaur at high launch rates can be reduced about 30 percent, and thus its

cost would be at $19 million as shown in table 14. Similarly, the cost of the Saturn V

and Saturn V/Centaur are taken at $150 and $155 million, respectively. The costs used

herein include only the costs of the launch vehicles and their operations. They do not

include operational costs associated with handling the nuclear waste at the launch site.

These are discussed later in the section TOTAL COSTS FOR SPACE DISPOSAL OF

NUCLEAR WASTES.

SPACE SHUTTLE/THIRD-STAGE PERFORMANCE AND COST

The Space Shuttle by itself can deliver payloads only to low Earth orbit. Missions

beyond low Earth orbit will be accomplishedby having the Space Shuttle carry both a

propulsion stage and the mission payload to Earth orbit in its cargo bay. The extra pro-

pulsion stage is generally referred to as a Space Shuttle third stage. After the third

stage and payload are deployed in Earth orbit from the shuttle orbiter, the third stage

will inject the payload to its destination. Existing expendable upper stages are currently

being evaluated for early use as Space Shuttle third stages. These stages would be ex-

pended on each flight. However, it is planned to eventually develop a new space tug

explicitly for use as a Space Shuttle third stage which would have the capability of being

recovered and reused. The Space Shuttle would launch the tug and payload into low Earth

orbit. After the tug and payload are deployed from the shuttle orbiter, the tug will inject

the payload to its mission destination. Following the injection burn, the payload is sepa-

rated from the tug, and the tug performs a series of burns to return to the waiting shuttle

orbiter for recovery and reuse.

Several Space Shuttle/third-stage options were considered in this study:

(1) One of the reusable space tug concepts under study by NASA: The tug is de-

signed to have the capability of performing a roundtrip mission to geostationary (synchro-

nous) orbit with a 1360-kilogram payload. It is a hydrogen-oxygen fueled stage with an
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engine specific impulse of 470 seconds, and it has a propellant capacity of approximately

24 040 kilograms.

(2) A similar reusable tug but optimally sized for the waste disposal mission

(3) The existing expendable Centaur stage: It also uses hydrogen-oxygen propellants

and has an engine specific impulse of 444 seconds and a propellant capacity of about

13 610 kilograms.

(4) A similar expendable Centaur stage but resized for the waste disposal mission

Performance

With these various Space Shuttle/third-stage options, useful payloads are achievable

to only high Earth orbit and solar orbit destinations. The performance of these systems,

which is based on a mission AV of 4. 11 kilometers per second, is shown in table 15.

The performance data are based on a Space Shuttle delivery capability of 29 484 kilo-

grams into a due-East 185-kilometer orbit. The optimally sized third stages have higher

payloads. For the waste disposal mission, higher payloads are achievable to high Earth

orbits (higher than the geostationary option) because no payload is returned by the tug.

This increase in payload must be offset by decreasing the tug's propellant (off-loaded) to

stay within the payload limits of the Space Shuttle. For the high Earth orbits and solar

orbits, the reusable tug, at its current size, can deliver a payload of 4170 kilograms.

The optimally sized tug (about 20 870 kg propellant) can deliver a payload of 4670 kilo-

grams. In the case of the Centaur, the propellant capacity for the current size is too

small to utilize the full orbital capability of the Space Shuttle. The performance of the

Centaur stage can be improved if its propellant capacity is increased. For the high

Earth orbits and solar orbits, the current Centaur stage can deliver 6490 kilograms. An

optimally sized Centaur (about 17 240 kg propellant capacity) can deliver a payload of

8480 kilograms.

It should be recognized that the higher payload capability shown for the Centaur stage

is a consequence of its being expended rather than recovered. For the reusable tug, a

portion of its propellant is required for its return to the shuttle orbiter waiting in low

Earth orbit. For the expendable Centaur stage, all the propellant is used to achieve the

desired mission AV and its payload capability is accordingly higher. If the tug were

expended, its performance would be comparable to that for the optimally sized Centaur

stage.

Cost

The cost per Space Shuttle flight is estimated at approximately $10.5 million. In
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addition, the cost per reusable tug flight is assumed to be $1.75 million. This cost in-

cludes operations, refurbishment, and amortization of a unit productic_u cost of $20 mil-

lion. Totaling the two, the cost per flight of a Space Shuttle/reusable tug is about $12.25

million. The cost of the expendable Centaur stage at the high launch rates required for

waste disposal would be about $5.5 million. In total, the cost of a Space Shuttle/

expendable Centaur launch is about $16 million. The performance and cost per flight of

these configurations are summarized in table 15.

LAUNCH VEHICLE PERFORMANCE/COST COMPARISON

Except for the Saturn V/Centaur, the launch vehicles considered thus far can deliver

useful payloads only to high Earth orbit or solar orbit destinations. In order to provide

an overall vehicle comparison for these destinations, the payload, cost per flight, and

cost per kilogram of payload delivered to a AV of 4.11 kilometers per second are sum-

marized in table 16. These data should be used only for making preliminary compari-

sons since other factors will have to be considered in making a vehicle selection. For

example, there are limits on the desired waste package size. Also, the nuclear waste

is only a small fraction of the total waste package weight, and this fraction will vary

with waste package size. These and other factors will influence the choice of a launch

vehicle for a particular destination. Nonetheless, table 16 shows that the Space Shuttle

vehicles are more cost effective than the current expendable launch vehicles. The cost

per kilogram of total payload delivered by the Space Shuttle vehicles is" of the order of

one-half of that delivered by expendable launch vehicles.

For the shuttle-launched missions, it appears worthwhile to resize the upper stages

for the waste disposal mission. The improved performance and cost effectiveness

should readily justify the nonrecurring costs associated with resizing the stages. For

the high Earth orbits or solar orbits the cost per kilogram of payload delivered for the

resized Centaur stage is about 25 percent lower than for the resized reusable tug. This

indicates that an expendable third stage would be more cost effective than a reusable

stage. This conclusion is sensitive to the required mission AV. If the required mission

AV were below about 3.3 kilometers per second, a reusable third stage (tug) could be

more cost effective than an exp_ndable stage (Centaur).

The Shuttle third-stage options considered in this portion of the study were all single

stages. Many additional options become available if multistage configurations (e. g., re-

usable tug plus expendable kick stage) were to be considered, although it is not clear that

they will necessarily be more effective. In addition to performance and cost, safety con-

siderations and specific mission details can influence the final choice of a third stage. It

is therefore recommended that both reusable and expendable third stages continue to be

considered in further evaluations.
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MULTIPLE SPACE TU(_ CONFIGURATION PERFORMANCE AND COST

The only launch vehicle considered thus far that has a useful payload capability for

the direct solar escape mission is the Saturn V/Centaur. As shown in table 14, it can

deliver a payload of about 7480 kilograms to this destination. At a launch cost of $155

million, this results in a specific cost of $20 720 per kilogram. This is r-_ughly an

order of magnitude higher than for the shuttle launches to high Earth or solar orbits.

One possibility for providing a more cost-effective solar escape capability is to use

several shuttle/tug launches to assemble a tandem tug in Earth orbit. This approach

could also be used to provide higher payloads for the Earth orbit and solar orbit desti-

nations.

The procedure would be to use several shuttle launches to place several tugs along

with the payload into low Earth orbit. The tugs, which have the inherent capability of

being able to rendezvous and dock with each other, would be assembled in orbit to form a

tandem vehicle. In performing the mission, the tug stages burn sequentially. And each

stage, if it is to be recovered, returns to its waiting shuttle orbiter.

In this preliminary evaluation of a tandem vehicle, only the fixed-size tug concept is

considered. It is assumed to be available in both reusable and expendable configurations.

The tug and shuttle performance parameters and costs are the same as discussed pre-

viously. The one exception is the cost of an expended tug. The expected unit cost of the

reusable tug is of the order of $20 million. If the waste disposal mission required ex-

pending a tug, the cost of the expendable tug could be considerably lower. The produc-

tion rate for an expended tug would be much 'higher than for a reusable tug since each

disposal mission would require a new tug. The high use rate would probably justify de-

velopment of an expendable tug that incorporated only the features necessary for accom-

plishment of the waste disposal mission. As an alternate approach, a modified version

of the existing Centaur stage could be used as an expendable tug. An accurate cost for

the expendable tug cannot be established at this time, but for the purposes of this study

it is taken as $6 million per flight.

Each of several tandem tug configurations can accomplish the direct solar escape

mission. Two such configurations are considered here for illustrative purposes. The

first tandem configuration considered consists of two stages, a reusable tug plus an ex-

pendable tug; it requires two shuttle launches. The first shuttle launch carries a fully

loaded reusable tug (full propellant tanks) to orbit and a second shuttle carrying an off-

loaded expendable tug plus payload. The second tandem configuration considered con-

sists of three stages, two fully loaded reusable tugs plus an off-loaded expendable tug

and payload, and requires three shuttle launches. In both configurations the recoverable

tugs are the lower stages (burned first) since this is an optimum arrangement. The re-

coverable tugs are brought back to Earth with the shuttle orbiters used to initially launch
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the tugs so that there is no additional shuttle cost for returning a tug.

The ideal payload capability to solar escape for the two- and three-stage tandem

configurations is 3900 and 6080 kilograms, respectively. However, gravity losses will

significantly reduce the actual performance of these multitug configurations. The gravity

losses have been determined for these configurations by assuming the tug has a thrust

level of 88 940 newtons (20 000 lbf). The actual payload capability of the two- and three-

stage configurations for direct solar escape is 2270 and 3040 kilograms, respectively.

A higher tug thrust level could be used to reduce the gravity losses, but it is not ex-

pected that the new tug engine will have a thrust level higher than 88 940 newtons.

Another approach for reducing the gravity losses is to use a technique referred to as

perigee propulsion. This is operationally more complicated and necessitates carrying

the waste package once around the Earth in an elliptical orbit between tug burns. How-

ever, using perigee propulsion increases the payload capability of the two- and three-

stage configurations for direct solar escape to 3270 and 4400 kilograms, respectively.

An overall comparison of launch vehicle performance and cost for the direct solar

escape mission is shown in table 17. The expendable Saturn V/Centaur provides the

highest payload weight, but at a cost of about $20 700 per kilogram. The multiple

shuttle/tug configurations using perigee propulsion achieve lower payloads, at a cost of

about $9000 per kilogram. This lower cost, however, is of the order of four times

higher than the cost for the high Earth orbit and solar orbit destinations using the

Shuttle/third stages considered (table 16).

SPACE TRANSPORTATION SYSTEM CONCLUSIONS

The currently planned Space Shuttle is more cost effective than current expendable

launch vehicles by about a factor of 2. The Space Shuttle will require a third stage to

perform the disposal missions. Depending on the particular mission, this third stage

could be either a reusable stage such as the Space Tug or an expendable stage such as a

Centaur. In either case, the third stage should be resized for the selected disposal mis-

s ion. In fact, the launch rates required for waste disposal are expected to be sufficiently

high that it will probably be worthwhile to develop a version of the entire launch vehicle

dedicated to providing maximum performance, lowest cost, and higher reliability for the

disposal mission.

In this study, only current or planned space transportation systems were considered.

However, the waste disposal problem will extend far into the future, and new space tech-

nology and systems development can be expected. Consequently, the performance and

cost data presented in this section may be conservative as far as future capability is con-

cerned.

2O



NUCLEAR WASTE PACKAGING

GENERAL CONSIDERATIONS

For this study the nuclear waste material was divided into two main categories:

fission products, and actinides with various residual amounts of fission products. Pre-

liminary screening studies were first conducted to determine the minimum cost of trans-

porting these wastes into space (refs. 1 and 2). The penalties due to accident and re-

entry protection systems were not included. Hence, the amount of waste carried per

launch was a maximum. If these minimum costs were acceptable, a more detailed de-

sign and analysis was conducted. For the fission products the costs were high, and only

a preliminary study was made. For the actinide wastes a more thorough study was con-

ducted to determine the technical and economic feasibility. This detailed study included

design for protection during reentry and other accident conditions.

In order to transport nuclear waste material in a Space Shuttle, as shown in figure 6,

there are certain requirements which the waste package must meet. These requirements

pertain to the operation of the shuttle and the general safety at the launch site and of the

public. The requirements of the nuclear waste package integrated with the shuttle are

discussed in the next main section.

ACCIDENT ENVIRONMENTS

In conceptually designing a package the total environment must be considered. This

includes all types of potential accidents and conditions the radioactive waste package

could be subjected to. The accident environments were separated into three areas of

interest:

(1) Launch pad and launch environment

(2) Reentry in case of an aborted mission

(3) Environment at impact and after impact

How the nuclear waste packages might respond to these environments is discussed in the

section NUCLEAR SAFETY CONSIDERATIONS.

Launch Pad and Launch Accident Environment

At the time the shuttle and tug are loaded with fuel and during the initial sequence of

lift-off, the possibility of explosion and fire exists. The following are the estimated con-

ditions that may occur during such an explosion or fire:
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Blast overpressure. - Assuming a mixing mode yielding not more than 20 percent

TNT equivalency for the liquid propellant in the orbiter, an explosion could produce about

150 atmospheres (2200 psi) blast overpressure. For the two solid-propellant boosters,

assuming a yield of 5 percent TNT equivalent (difficult to involve more solids in an

explosion), a blast overpressure of about 100 atmospheres (~ 1500 psi) could occur.

Fragmentation. - During an explosion, many sizes and shapes of particles or frag-

ments (ref. 10) with different velocities move radially outward from the center of the

explosion. The effect on the radioactive waste package is a function of the mass of the

projectile, its velocity, and the difference in the material properties of the projectile and

the protecting surface. Most of the particles involved in the explosion would be soft

(such as aluminum) compared to the stainless-steel impact vessel.

The velocity distribution of a typical explosion involving propellant and tanks conduc-

ted under Project PYRO (ref. 11) is shown in figure 7. The smaller particles will have

the higher velocities, and the larger particles the lower velocities.

Fireball. - A fireball from the liquid propellants could last 20 seconds and would

range in temperature from 2750 ° C to approximately 982 ° C. The solid propellants

would not create such a fireball.

Afterfire. - After the fireball the liquid propellant would burn at around 982 ° C for

approximately 30 minutes. The solid propellant when exposed to air and ignited would

burn at approximately 2360 ° C and could last minutes depending on the thickness of the

chunk of propellant. The maximum web thickness of solid propellant considered was

1.22 meters. In all probability, pieces smaller than the web thickness would exist

around the nuclear waste package.

All these environments were considered in the design of the protection system for

the radioactive waste.

Reentry Environment in Case of an Aborted Mission

During the flight to orbit, in orbit, and during the flight from orbit to the final des-

tination, the mission could accidentally be aborted in such a manner that the waste pack-

age would reenter the Earth's atmosphere. For the conceptual design of the package, a

perpendicular reentry (90 °) from a solar orbit was assumed. This reentry could not be

obtained in the Earth orbit destination. The velocity at atmospheric reentry was taken as

11 kilometers per second. During this type of reentry the surface is exposed to a heat

flux, such as that shown in figure 8, which has a peak around 300 kilowatts per square

centimeter. The duration of this high heat flux is 1 or 2 seconds, as indicated in fig-

ure 8. Other reentry angles and possible velocities were considered less severe. The

reentry shielding was designed to survive the 90 ° reentry.
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A plot showingthe sea-level impact velocity as a function of the hypersonic ballistic
coefficient is presented in figure 9 for several reentry angles. (The ballistic coefficient
is equal to mass times area times the drag coefficient, mACd, when Cd = 0.98. ) For

spherical-shaped reentry packages the diameter of the reentry shell needed to slow the

package down can be easily determined for any total weight to impact at a prescribed

velocity. All reentry packages were designed to impact at sea level with a velocity of

300 meters per second or less. The effect of impact on the package is discussed in the

appendix. The designs of the reentry package are presented in the section Overall

Configuration with Reentry Shell (p. 29).

Impact Fnvironment

At the time of impact the package would be thermally heated from the waste and from

additional heating during the reentry. Impact could be on land or water. It could be

either on soft material in which the package penetrates the surface, such as water or

soil, or on hard material which deforms the package.

Soft impact would leave the package intact and buried beneath the surface. The

thermal energy would then have to be dissipated to the surrounding material whether it

is water, soil, mud, or sand. For any of these conditions the package should contain no

more heat-source material (radioactive waste) than could be safely dissipated without

melting the containment shell and releasing radioactive waste.

Impact on a sufficiently hard surface, such as granite, concrete, or steel, would

cause the containment shell to deform but not to bury itself. The package would be

left on the surface in a nonsymmetric shape. The package could transfer its heat by con-

duction to the surface, convection to the air, or radiation to the surrounding environment.

The problem would be less severe from the standpoint of heat removal than for the deep-

burial condition, but it would be more severe from the standpoint of impact deformation

to the package. This is discussed in more detail in the appendix.

Postimpact E nvironment

Even though the nuclear waste package is designed to maintain its integrity, it may

be possible to breach the containment shell. If this should happen and the package is

above ground, some oxidation of the materials inside could take place unless they are

protected against oxidation. If the outer shell should be breached in the case of soft im-

pact (burial), which is much less likely than for hard impact, any oxidation would be

slowed down by lack of airflow. However, after burial in soil the temperature of the
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layers wouldbe much higher becauseof the poor conductivity of soil. The temperature
wouldbe less if the packagewere in water or very moist ground.

The design approach is to keep the package intact and to maintain the radiation

shielding around the nuclear waste.

PACKAGE I - ALL FISSION PRODUCTS IN SOLID MATRIX

IN CYLINDRICAL CONTAINERS

Space disposal of actinides looks more promising than space disposal of all fission

products. Consequently, the actinides were studied in more detail. This section sum-

marizes the results of the preliminary study of fission product disposal.

Description of Contents

The fission products considered for space disposal, listed under package I in

table 10, were assumed to be mixed oxides of the isotopes described in table 1 contained

in a solid matrix form. Several matrix forms were reviewed. And it was concluded that

a solid matrix, such as the spray melt, could be used to maximize the amount of fission

products without exceeding stable temperature levels. Some of the characteristics of

the spray melt are given in table 18. (Also see ref. 12 for more data on spray melts

and other types of solid matrices. ) The spray melt was considered over other matrices

primarily because its higher stable temperature (1170 K) and its relatively higher

thermal conductivity (1.8 W/m-K), which allowed the highest mass of fission products

per unit volume.

In the screening analysis it was assumed that the nuclear waste would be stored for a

period of 10 years to reduce the activity and the heat loads as shown in tables 2 and 3

under the column for 3652 days. The material would then be processed into a solid

matrix and formed into cylinders with a compatible canning material, such as stainless

steel as described in reference 13. The cylinders would be surrounded by gamma ray

and beta particle radiation shields, and an outer layer would be added for impact pro-

tection. A typical cylindrical package is shown in figure 10. This geometry had been

previously selected for Earth storage and not for space disposal.
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Since the radioactive waste is composed of fission products, the main sources of



radiation are beta and gamma rays from the decay processes of the isotopes. The beta
particles (electrons) canbe stoppedby less thana millimeter of material. The gamma
rays require a much greater mass to stop them. The shielding material chosenas rep-
resentative was depleteduranium. Shielding was added to reduce the dose rate at

3 meters from the center of the package. Dose rates between 1 and 500 rem per hour

were considered. The required shield thicknesses are shown in figure 11 as they apply

to the maximum diameter of 0.71 meter for the fission product matrix obtained in the

screening study of reference 1.

Impact Protection

Preliminary tests of the impact strength of spherical shapes approximately

0.6 meter in diameter were made. Based on the results, a 2.54-centimeter-thick

stainless-steel impact shell was added to the shielded waste package. Impact tests of

this sphere on reinforced concrete at velocities to 320 meters per second exhibited its

capability to withstand severe deformation without cracking or splitting open. However,

no data on high-velocity impact tests on cylinders were available. The drag coefficient

appearing in the ballistic coefficient in figure 9 is higher for cylinders than for spheres,

as illustrated in figure 12 and will, for the same total mass, result in a lower impact

velocity.

Normal Operating Temperatures

The thermal energy from the decay of the fission products must be dissipated. The

screening study sized the diameter of the package so that the accepted maximum stable

temperature of the matrix would not be exceeded when the only means for dissipating heat

was through radiation to space. For spray-melt matrices the maximum stable tempera-

ture is 1170 K. For a shielded fission product waste disposal package with an outer

diameter of 0.97 meter (maximum diameter of 0.71 m for matrix without exceeding

stable temperature), the surface temperature when radiating to space will be approxi-

mately 500 K. The shielding for this case was based on 10 rein per hour at 3 meters

from the center.

Packaging Dimensions

The diameter of the cylindrical package for the disposal of all fission products can

be set by the limiting matrix temperatures and the desired exterior shielding dose rate.
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The remaining dimension to fix is the length. Based on the different payloadsfor differ-
ent destinations as presented in the section SPACESHUTTLE/THIRD STAGEPERFORM-
ANCE AND COST, the length of the waste package can be readily determined. Shielding

for the ends was also taken into consideration, and the weight for end pieces was deducted

from the payload levels prior to determining the length.

Diameters and corresponding lengths as a function of the exterior dose rate are pre-

sented in figures 13 and 14. The lengths are shown for an assumed payload of 7750 kilo-

grams. Allowing for a reentry shield of 730 kilograms results in the payload obtained

from table 16 for the Space Shuttle with an optimized Centaur for either a high Earth or-

bit destination or a solar orbit destination (near 0.9 AU).

Packaging Weight Ratios for Package I

From the preceding dimensions and the characteristics of the matrix material, the

amount of fission products within a package can be determined. For a payload of 7750

kilograms, the packaging weight ratio (i. e., total weight to fission product weight) with-

out the reentry shield varies from approximately 45 at a dose constraint of 1 rem per

hour to about 13 at 500 rem per hour, as shown in figure 15. These weight ratios are for

the high Earth orbit destination. Because the AV's are comparable, it also applies to

the solar orbit destination or Earth escape.

Space Shuttle Launch Frequency for Disposal of Package I

The number of Space Shuttle flights needed for the high Earth orbit destination was

based on the total amount of all fission products (fig. 2) and the use of the Space Shuttle

and the optimum-sized tug. It was assumed that the fission products would be stored for

10 years after they were taken from the reactor and prior to launch. Figure 16 shows the

rapid increase in shuttle launches required to dispose of all fission products to a high

Earth orbit destination. Any other destination would require more shuttle launches.

Before the turn of the century, assuming the program started in 1985, the number of

shuttle launches would exceed three per day even for packages with shielding to a dose

rate of 500 rem per hour, which in itself would be unacceptable. More separation to con-

centrate the more hazardous fission products is recommended to reduce the launch rate

and possibly to improve the economics, see the section ECONOMICS (p. 58).
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PACKAGEII - ACTINIDESWITH 0.1 AND 1 PERCENTOF FISSIONPRODUCTS

The secondtype of radioactive nuclear waste reviewed was the actinide elements
containinga percentageby weight (0.1 and 1 percent) of the fission products discussed in
the previous section. The ratio of actinide weight to fission product weight for actinides
containing 1 percent of the fission products is about 3 to 1. After the screening study
(ref. 2) the actinides were studied in more detail to provide a conceptualdesign for de-
termining the feasibility of the total approach. This design, presented in the following
subsections, is the design onwhich the safety considerations are based. The packaging
conceptis shownschematically in figure 17.

Description of Contents

The actinides andthe fission products, as listed in tables 1to 6 for the LWR's,
were assumedto be in an oxideform. The personnel at Battelle Pacific Northwest
Laboratories, whowere preparing the comparison study for the AEC, suggestedthe fol-
lowing form for encapsulatingthe actinide and fission product oxides:

(1) Speroidizing them to approximately 3.16 millimeters in diameter
(2) Coating them with a refractory metal suchas 0. 127-millimeter-thick tungsten,

leaving a void on the inside for helium (alpha)decay
(3) Coating them with an oxidation-resistant alloy suchas 0. 025-millimeter-thick

molybdenumdisulfide or aluminum oxide (A1203)
(4) Mixing the resulting spherical particle in a matrix material combinedwith a

highly thermal conductingmaterial: This study used a matrix of 50volume per-
cent lithium hydride (LiH) with equalparts copper and aluminum

A model of the matrix with spheres of nuclear waste is shownin figure 18. The
amountof actinide waste relative to the matrix was varied to obtain the maximum amount
of actinide wastewith fission products in a payloadwithout exceedinga limiting temper-
ature in the matrix. (Seeref. 2 for details.) It was found that approximately 8 to 10
percent by volume of actinides canbe containedin the matrix without exceedingthe pre-
scribed temperature limit of 860K imposedon the matrix. Lithium hydride dissociation
was the primary factor limiting actinide content. The activity and the thermal power for
the actinides with fission products are presented in table 10. The values used in the
studyare for the LWR waste. The density assumedfor the actinide oxides was 10grams
per cubic centimeter. The thermal conductivity of the matrix was calculated as 29.44
W/m-K by using methodsfrom reference 14.
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Radiation Shielding

Shielding for the actinide waste containing fission products is required to reduce the

external dose rate to acceptable levels. These levels must be acceptable for handling,

transporting in a manned Space Shuttle, or possible accidental exposure to the general

public. The value of 1 rem per hour at 1 meter from the external surface of the package

was chosen as the base point ("Standards for Protection Against Radiation," IOCFR-20,

Code of Federal Regulations, Titles 10-11, 1968) for accidental exposure to the general

public. However, the study also considered dose rates as high as 100 rein per hour.

Since the shielding was for neutrons, all_a and beta particles, and gamma rays,

a weight optimization study as discussed in reference 2 was used. This resulted in a

single layer of tungsten (W) followed by a layer of lithium hydride. The calculations

showed that the main source to be shielded was the gamma rays from the fission prod-

ucts and not the neutrons or the alpha particles from the actinides. _nielding thickness

as a function of fission product contamination and mass of actinide for a range of dose

rates are shown in figures 19 and 20. As shown in figure 20 the actinides within the ma-

trix become self-shielding, that is the shielding thickness approaches a constant value

for increased amounts of actintdes.

In order to minimize the shield weight, which is a major portion of the total payload

weight, a spherical geometry was chosen. The layer adjacent to the matrix material

containing the actinides is composed of the high-density gamma shielding material, in

this case tungsten. For safety purposes a layer of stainless steel was added on the out-

side of the tungsten to prevent oxidation of the tungsten in the event of a break in the outer

vessels. The next layer is the neutron shielding; lithium hydride was selected for this

study. These layers complete the shielding for the actinides and fission products con-

tained in the matrix. The layers of material external to these were not considered as

part of the shielding analysis.

Impact Protection

The primary impact protection for the actinide waste package is a spherical shell on

the outside of the lithium hydride. The spherical shell selected, based on experiments

and analysis, was 1.58-centimeter-thick 304 stainless steel. This was backed up by an

additional shell of 0.95-centimeter-thick 304 stainless steel between the lithium hydride

and the tungsten shields. More discussion on impact can be found in the appendix.
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Overall Configuration with Reentry Shell

For reentry protection, a reentry shell must be added to the exterior of the impact-

protected nuclear waste. An aerodynamically stable configuration was considered neces-

sary to minimize the weight penalty. Based on previous studies for stable reentry con-

figurations for planetary exploration (ref. 15), the Planetary Atmospheric Experiment

Tests (PAET) shape (fig. 21) was selected for the reentry shell.

In order to ensure stability, the nuclear waste and matrix with shielding are offset

forward approximately 5 percent of the radius. The outer diameter of the reentry body

can be determined for any total weight with the assumptions used previously in the sec-

tion Reentry Environment in Case of an Aborted Mission. For the suggested missions

(i. e., high Earth orbits, solar orbits, and solar system escape), payload capabilities

are discussed in the section POTENTIAL SPACE TRANSPORTATION VEHICLE PER-

FORMANCE AND COST. The destination payload capabilities, for a Space Shuttle as the

basic launch vehicle, were 8480 kilograms for high Earth orbit or solar orbit missions

and 3270 kilograms for the solar system escape missions. These payloads may be

designed as single waste packages or as multiple waste packages each with its own re-

entry shell.

Single and multiple reentry packages. - The screening study noted that the tempera-

ture limit on the matrix would prevent the choice of a single sphere for the high Earth

orbit package with 0.1 percent of the fission products. Therefore, the weight for this

type would have to be divided into two or more packages. For the package H actinide

waste with 1 percent of the fission products, the design can be single packages. How-

ever, future safety analyses may indicate that multiple packaging would be more ad-

vantageous.

Reentry shell material. - In reentry, the heating rates on the package vary depending

on velocity, angle, and atmospheric density. At low heating rates the convective heat

transfer is most important, and materials such as graphite function well. Apollo re-

entries are an example of convective heating rates. For high velocities, such as can be

encountered in planetary entry following Earth-escape velocities at steep angles, the ra-

dtative heating rate dominates and a reflective type of material is required. One such

material that has high reflective capability with multiple reflective sites for scattering

and reflecting is a composite made of quartz fibers woven into a mat, similar to fiber-

glass, with a silica binder added. This material, proposed by the NASA Ames Research

Center, results in a very good reflective barrier for the reentry shell. Some of its

thermophysical properties are
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Density, g/cm 3 .................................... 2.5

Specific heat, J/g-K .................................. 1.15

Thermal conductivity, J/sec-cm-K ....................... 2.5><10 -2

Thermal expansion coefficient, per K ...................... 5.6×10 -7

This layer of composite silica fibers must be backed with a thin silver film followed

by graphite (3D) to act as the reentry heat shield in the slower reentry mode. These lay-

ers and the thicknesses required based on analytical studies are presented in figure 22.

Insulation is added primarily to protect the stainless-steel containment vessel from

excessive heating during the reentry or during a launch pad fire (see the section

ACCIDENT ENVIRONMENTS). On the back of the reentry shield, the thicknesses are

reduced and the insulation has been removed to allow for the waste heat from the acti-

nides and fission products to be conducted and radiated away. These thicknesses are

shown in figure 22(b). The reentry shell weights represent approximately 13 percent of

the package weight.

This discussion on reentry shells could apply to package I for all fission products.

They could be designed to be within the weight allowance of 730 kilograms for the size

required.

Overall package configuration. - The representative configurations based on the re-

entry shells discussed in the preceding section for impact protection and shielding

against radioactivityare presented in figures 23 to 25. Payloads containing actinides

with 0.1 percent of the fission products destined for high Earth orbitswere divided into

three equal packages, each with its own impact and reentry protection (fig.24). The

largest single package (fig.23) has a diameter of 2.80 meters, with a I.37-meter-

diameter stainless-steelsphere surrounding the nuclear shieldingand the matrix con-

rainingthe actinide waste with 1 percent of the.fissionproducts. This package weighs

8400 kilograms, including 384 kilograms of actinides and 134 kilograms of fission

products. Other data for all the actinide packages considered are given in table 19.

In order to prevent any free hydrogen that could be present in the lithium hydride

from reaching the outer stainless-steelimpact shell, a 0.127-millimeter-thick layer of

tungsten can be deposited on the inside of the stainless-steel shell. This layer should

prevent hydrogen from diffusing into the stainless-steel shell. However, there are no

data available for the period of time involved in this application.

Package Equilibrium Temperature

While the nuclear waste package is in the Space Shuttle bay, the total package, after

having been precooled, slowly increases in temperature. After separation from the 0r-

biter, the waste package will come to an equilibrium temperature. Based on the thermal
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heat source (table 19)and the dimensions of the package, steady-state temperature cal-
culations were made. Using the limiting temperature criterion for the matrix material
as a guide to limit the amount of actinides determined the minimum number of packages
per total payload. The steady-state temperature distribution through the packageis
shownin figure 26 for the single-packagedesign for high Earth orbit with actinides and
1 percent of the fission products. The peaktemperature at the center is 860 K, the
limiting temperature. The other waste packagesdescribed in table 19were below the
maximum operating temperature, with the exception of the single packagefor high Earth
orbit with 0.1 percent of the fission products in the actinide waste.

Total Packaging Weight Ratio for Package IIBased on External Dose Rate

The preceding discussion and design has been primarily for an external dose rate of

1 rem per hour at 1 meter from the surface of the impact shell. If this dose rate could

be increased (subject to safety assessment and acceptance), the amount of radioactive

actinide with fission products disposed of per launch could be increased. The effect of

dose rate on the packaging weight ratio is shown in figure 27 for two destinations.

The choice of destination does not substantially change the packaging weight ratio.

The greatest effect on the weight ratio is the reduced shielding for the higher dose rates.

The predominant gain is by raising the allowable dose rate to 10 rem per hour. Beyond

that, the gains are small and in view of the safety considerations discussed in the section

NUCLEAR SAFETY CONSIDERATIONS are probably not worth the increased risks. The

packaging weight ratios shown in figure 27 are economically feasible ratios, as dis-

cussed in the section ECONOMICS.

Space Shuttle Launch Frequency for Disposal of Package H

The number of Space Shuttle launches per year that would be needed is a function of

the amount of actinide waste available (assuming a 10-yr Earth storage), the amount of

actinide waste contained in the payload, and the destination.

For analysis, two representative destinations were selected, the high Earth orbit

and the solar system escape. For the high Earth orbit destination the total destination

payload from table 16 is 8480 kilograms. One percent of this payload was deducted for

extraneous structure used to mount the package or packages. Any additional weight

penalties should be relatively small and will not greatly alter the results. For the sec-

ond destination, solar system escape, the payload selected was 3270 kilograms from

table 17. This destination requires a double shuttle launch. One launch carries a re-

usable tug, while the other launch carries the waste package mounted on an expendable
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tug. The two tugs then rendezvous in orbit. This payload was achieved by applying

thrust at the perigee to obtain the required AV (8.75 km/sec). Therefore, for each

nuclear waste package delivered to solar system escape, two shuttles must be launched.

The amount of actinides per waste package or per payload, depending on the number

of packages, can be obtained from table 19 for a dose rate of 1 rein per hour at 1 meter

from the surface of the package. For the amount of actinides available, data from fig-

ures 2 and 3 were used, with the assumption that no launches would take place before

1985 and that the waste would be stored for a minimum of 10 years prior to transporting

it to space for disposal. For the high Earth orbit destinations, it was assumed that the

nuclear waste payload would be contained in three separate packages for each disposal

mission.

With the preceding assumptions the number of shuttle launches required per year to

transport the actinide waste containing either 0.1 or 1 percent of the fission products

are presented in figure 28. As indicated in the curves, the number of shuttle launches

remains under 100 per year for the high Earth orbit destinations through the year 2010

(waste material produced in the year 2000). For the solar system escape destination,

more than 250 launches per year (only 125 carry waste) are required in the year 2000 for

actinides with 1 percent of the fission products remaining. If more fission products are

removed (i. e., only 0.1 percent remaining), the number of launches required is reduced

to approximately 150 (75 with nuclear waste) by the year 2000. Extrapolations beyond the

year 2010 were not considered in this study. The economic feasibility of disposal of

actinide nuclear waste into either of the aforementioned representative destinations is

discussed in the sections TOTAL COSTS FOR SPACE DISPOSAL OF NUCLEAR WASTES

and ECONOMICS.

PACKAGE III - PURE ACTINIDE S WITH AND WITHOUT CURIUM

The third type of package considered in the study was one in which essentially all

fission products were separated out, leaving an actinide purity of 0.99999. A variation

of this case was to remove 99 percent of the curium isotopes (the main heat source in

the actinides). Table 6, which lists the thermal power for each isotope in the actinide

waste, shows that the isotope curium-244 contains most of the thermal power in the

waste. Therefore, removal of this isotope alone would help in those cases where the

thermal heat restricted the size of the waste package.

32

Description of Contents

The waste content for package III was considered to be identical to that for



packageII, except it was assumed that for shielding purposes and for weight estimates

there were no fission products. The matrix material and the spheroidizing of the acti-

hide oxides were the same as for package II.

For the variation of removing 99 percent of the curium isotopes, the basic changes

occur in the thermal power, which is greatly reduced (from 0. 071 to 0.011 W/g) for the

water-moderated reactors (LWR), and in the radioactivity (table 10). With these changes

the amount of actinides in a single package can be increased without exceeding the tem-

perature limit.

Overall Configuration for Package IH

Pure actinides with curium. - The thermal power of essentially pure actinides

(0. 99999) is slightly more per gram than for package II (table 10). Thus, the amount of

matrix material cannot be decreased because it is needed to conduct heat out of the waste

package. The shielding required for pure actindes with curium when the steel impact

shells (total thickness, 2.54 cm) are included will be less than 0.8 centimeter of tungsten

plus the same thickness of LiH as used in package II for 1 rem per hour for actinides

with 0.1 percent of the fission products. This is because the tungsten is for gamma rays

(associated with fission products) and the lithium hydride is primarily for the neutrons

(associated with the actinides). The impact shell arrangement used in package II re-

mains. The reentry shell, which is a function of the total package weight only, remains

the same as for package II. Table 20 lists the characteristics for this case.

Pure actinides with curium removed. - With the removal of the curium isotopes, for

LWR waste only, the thermal problem is considerably reduced. Not only can we assume

that a single package is acceptable (unless safety analyses require multiple packaging),

but also the amount of matrix material can probably be reduced. Therefore, several

times more pure actinides could be disposed of per package when the curium has been

removed. The limit would be to replace all matrix material with actinides (which is

probably not possible). For this study the matrix ratio was not changed, and there was a

12-percent increase in the actinide waste payload.

Packaging Weight Ratios for Package 1II - Pure Actinides

Based on the preceding discussion, overall package weights were determined for the

pure actinide in a matrix for dose rates between 1 and 100 rem per hour at 1 meter from

the outer stainless-steel containment (impact) shell. This was done for multiple pack-

ages for the representative destinations (high Earth orbit and solar system escape)
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assuming curium remained in the waste. The resultant overall packaging weight ratios,

including the reentry body, are plotted in figure 27 (0. 001 percent of the fission pro-

ducts). For a dose rate of 1 rem per hour the packaging weight ratio for both destina-

tions is approximately 10:1. For high Earth orbit, three packages per payload were re-

quired; for solar system escape, two packages per payload were required.

Space Shuttle Launch Frequency for Disposal of Package HI

Based on the packaging weight ratio, the number of Space Shuttle launches required

per year was obtained similarly to those for package II, as shown in figure 29. Fewer

launches are required for package III. However, the cost of separation to obtain the

0. 99999 purity will probably exceed the gains made in the increase per payload, so that

the overall disposal costs may be more than those for package H. Removing 99 percent

of the curium reduced the number of launches by about 10 percent.

REQUIREMENTS FOR WASTE PACKAGE INTEGRATION

WITH SPACE VEHICLE SYSTEM

GENERAL CONDITIONS

The Space Shuttle, selected for its cost effectiveness, is a manned vehicle. The

presence Of men onboard the orbiter will conskierably reduce the probability Of severe

accidents following an aborted mission. However, there are some additional safety re-

quirements for a shuttle payload (i. e., nuclear waste package and tug) because the

shuttle is manned. Furthermore, some of the requirements to integrate the nuclear

waste package with the shuttle and with a tug are also different from those for non-

radioactive payloads. Some of the normal requirements are covered in reference 16 on

Space Shuttle system payload accommodations.

NUCLEAR WASTE PACKAGE AND TUG OR TUG ALONE WITH SPACE SHUTTLE

Mounting in Bay Compartment

For the suggested destinations the shuttle will carry either a tug with the nuclear

waste payload or a tug which will be mated in a parking orbit with another tug containing

the waste package. There are several methods for mounting the tug either alone or with
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the waste packagein the bay. Some of these are illustrated in figures 30 and 31. The

requirements for mounting include

(1) Sufficient distance or material between the nuclear waste package and the crew

area to provide necessary shielding for the crew

(2) A means for securely fastening the nuclear waste package and tug or the tug

alone within the bay to prevent their accidental release in the event the orbiter

must land with its payload

(3) Selective surface arrangement (shape and thermal radiation absorption and emis-

sion characteristics) to maintain interior bay surface wall temperatures at or

below maximum

(4) An active cooling system that can be integrated on the launch pad with exterior

cooling and also supply emergency cooling during flight

(5) A support to ensure that the payload stays in place

Monitoring Requirements

Since the bay will contain either a tug with propellants or a tug with a nuclear waste

package and propellants, several types of monitoring are required:

(1) Monitoring the position of the tug or the package and tug within the bay

(2) Monitoring the waste package for external radiation

(3) Monitoring the waste package and the tug for temperature and boiloff of propel-

lant

(4) Monitoring the position of the waste package and tug or tugs during deploying and

propulsion phases

Deployment

After the orbiter has reached its parking orbit, the payload (tug or waste package

and tug) will be deployed. Several schemes for deployment of packages and tugs have

been considered in a variety of shuttle studies. A few representative ones are illustrated

in figure 31. The basic requirement is that the deployment places the tug and package

combination at a safe distance from the orbiter before the propulsive phase of the tug is

initiated.

Retrieval

Retrieval by the orbiter in a parking orbit of reusable tugs returning from providing
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the waste packagewith the required velocity is a scheduledoperation. An unscheduled
retrieval of a tug with its waste packagemay occur if a malfunction of the tug or package
shouldbecomeevident while it is in orbit. Regardless of whether the retrieved payload
is repaired in orbit or returned to Earth the aforementionedmonitoring and cooling
equipmentis required.

NUCLEAR WASTE PACKAGE WITH TUG

The nuclear waste package as envisioned will be mounted to a tug. This arrange-

ment will require an adapter, the design of which was not a part of this study. Sample

sketches of a waste package mounted to a tug are shown in figure 32. The adapter must

be sufficient to support the nuclear waste package during all shuttle and tug maneuvers

and to prevent heat transfer from the package to the tug as well as be capable of docking

a tug to a package.

An adapter will also be required between two tugs if the destination is beyond the

solar system. Both of these adapters must be capable of decoupling.

THERMAL REQUIRE MENT S

On Ground

On the ground, prior to launch, the nuclear waste package must be cooled to an ac-

ceptable temperature. That temperature depends on the thermal load of the package, the

interior shuttle bay temperature requirements, and the time from launching to opening of

bay doors in orbit. For this study a temperature range from 0° to 10 ° C was selected.

In Flight

The thermal requirements during flight depend on the thermal power of the package

(in kW) and the length of time between launching and the time when the bay doors of the

orbiter can be opened in orbit to allow radiation of the heat to space. The temperatures

of the package and the shuttle bay surfaces as a function of time after launch are shown in

figure 33. The thermal power for these examples was 25 kilowatts. As shown by the

data, the bay doors must be opened as soon as possible, within 9 hours after launch, to

maintain interior temperatures at or below the limiting values. In the event the bay

doors cannot be opened, an active emergency cooling system is required with sufficient

36



cooling ability to maintain temperature until the doors can be opened or the package can

be returned to Earth and connected to a ground cooling system.

GROUND SUPPORT REQUIREMENTS

GENERAL CONSIDERATIONS

The ground support requirements are the facilities and hardware used during the

prelaunch, landing, and vehicle refurbishing phases of operation at the launch facility.

The prelaunch phase consists of the period from the arrival of the radioactive waste

package at the launch facility through completion of the countdown with terminates in

ignition of the first-stage booster. The Kennedy Space Center is the reference launch

facility.

General considerations used in the analysis of payload prelaunch activities are

(1) Launch rate, 20 to 100 payloads per year

(2) Payload weight, 8000 kilograms

(3) Dose rate, 1 rem per hour at 1 meter from the surface of the waste package

container

(4) Surface temperature 1 of the waste package, cooled to 0 ° C (273 K)

(5) Launch system, Space Shuttle with reusable tug

FACILITIES

Extensive use can be made of existing facilities at the Kennedy Space Center. The

only new facility required to support an initial 20 launches per year for a nuclear waste

program is a controlled-area nuclear waste package handling facility. This facility

would accommodate special receiving-and-inspection confidence checks of the waste

package and would provide environmentally controlled storage sufficient for 100 launches

per year. All special and existing facilities designated to support the waste package

must provide nuclear radiation protection and monitoring, security, and environmental

control capability.

Maximum utilization of manipulators and other remotely operated devices is anti-

cipated to limit the radiation dose to ground support personnel. Dose limits will be

based upon recommendations by the Federal Radiation Council and the National Com-

mittee for Radiation Protection. Facility construction and modifications and shielding

1Surface temperature in space under normal conditions for the 1-percent-fission-

product case is 576 K with a center temperature of 865 K at 31.6 kW in the waste.
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requirements will be based on the "Standards for Protection Against Radiation,"

IOCFR-20, Code of Federal Regulations, Titles 10°11, January 1968, and "Basic Radia-

tion Protection and Measurements," January 1971. As a reference, the normal sea-level

yearly radiation background in the vicinity of the Kennedy Space Center is 0.15 rem.

Nuclear Waste Package Handling Facility

The nuclear waste package handling facility is designated for receiving and inspec-

tion, checkout, security, and affixing of handling and attachment mechanisms to the

waste package for transportation to the launch pad and integration to pad lifting devices.

The building is anticipated to be approximately 45 meters by 36 meters with a usable

area of 1400 squaremeters because of walls or shielded partitions in the interior. It

will accommodate as many as 10 waste packages in various stages of launch prepara-

tion, including one hot cell for retention and evaluation of a damaged waste package re-

covered after a pad abort or landing accident.

The estimated cost of the handling facility is $4 million (FY 1971) based upon prior

Space Station/Space Base Nuclear Assembly Building (NAB) cost estimates. Facility

costs are included in the section TOTAL COSTS FOR SPACE DISPOSAL OF NUCLEAR

WASTES.

Nuclear Waste Package Transporter

Transport and handling of the waste package is somewhat complicated by the large

size and mass of the payload and the necessity of continuous environmental control. The

transporter must provide common attachment mechanisms for interface equipment and

special ground support equipment to the waste package and tug. The transporter must

also serve as a storage trailer for contingencies, providing environmental protection and

status monitoring during transport, storage, checkout, and integration operations. It

must be designed to minimize handling functions and potentially hazardous situations.

One waste package transporter will be required at inception of disposal operations.

For the 100-waste-package-per-year operation, two would be required in operation, with

a third necessary as backup. Cost of the three waste package transporters should not

exceed $500 000.
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Figure 34 parametrically identifies the additional facilities and modifications to



facilities other than the nuclear waste packagehandlingfacility and the waste package
transporter that will be needed. The datawere developedas follows:

(1) Where available, SpaceShuttle trade-off studies, as well as SpaceShuttle pre-
liminary engineering reports were used. Their subjects included

(a) Modified mobile launchers (3)
(b) Maintenanceand checkoutfacility adjacent to the Vehicle Assembly Building
(c) Solid rocket booster disassembly facility
(d) Storagearea for external tanks and solid rocket boosters
(e) Hypergolic facility

(2) Other items not anticipated for current SpaceShuttleschedule include
(a) New mobile launchers
(b) New crawler
(c) New launchpad

The cost of these items was estimated by using original value, SpaceShuttle modifica-
tions, andan escalation rate of 5 percent.

Factors that will beaffected but are not identified in figure 34becauseof insufficient
data for estimating are

(1) Tug facilities and equipment
(2) Liquid propellant storage
(3) Shopsand laboratories
(4) Office space

(5) Backup pad(s) (not considered)

OPERATIONS

GENERAL CONSIDERATIONS

The prelaunch phase starts with the arrival of the waste product at the Kennedy

Space Center and terminates with lift-off of the booster from the launch pad. Following

this are the ascent and the orbital phases of the mission. In the orbital phase the waste

package and tugs are deployed for launching and expended reusable tugs are retrieved.

All operations associated with radioactive flight hardware will be safely imple-

mented to minimize the risk to personnel and the ecology and to provide assurance of

mission success. Nuclear safety at the Kennedy Space Center will be provided through

safety-oriented planning, analysis of mission operations, and implementation of proce-

dural safeguards. Further, radiological control will be administered (1) by establishing

and rigidly controlling radiation-designated work and exclusion areas, and (2) through

the use of impact/recovery teams and locating devices.
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LAUNCH AND GROUND OPERATIONS ASSUMPTIONS

Ground operations are predicated oa the availabilityof the facilitiesand equipment

previously described. These include the following dedicated facilitiesand equipment:

(I) Two Vehicle Assembly Building type bays

(2) Two crawler-transporters

(3) Pad 39C, new construction and prime

(4)A payload servicing tower at both pads

(5)A payload mobile retriever

Other assumptions include

(I)An orbiter recycle time of 240 hours (three 8-hr shiftsfor 10 days)

(2)A tug recycle time of 290 hours

(3)No emergency on-pad ejection of the waste package willbe used

(a)Because Space Shuttle/orbiter reliabilityafter checkout approaches i00 per-

cent

(b)Because the waste package will be designed to withstand on-pad conflagration

(4)A nuclear fleetof six orbiters

(5)One orbiter on callfrom NASA fleet

(6)Eight tugs

GROUND OPERATIONS

Ground Operations for Launch Vehicle

Based on the data available at this time, we do not believe that ground operations

would be materially differentfor the orbiter and tug than they are currently planned for

other Space Shuttle missions. However, for the nuclear waste disposal missions, the

payload would be inserted on the launch pad, which would require a new payload servicing

tower. Orbiter servicing is assumed to take 240 hours on a three-shift, 8-hour, year-

round basis. An equivalent tug recycle system will exist and will take 290 hours on a

three-shift, 8-hour, year-round basis. Some modification of the present orbiter

schedule willbe required, probably lengthening itby several hours to the 240-hour re-

cycle time. This time is intended to ensure airline reliabilityafter checkout and to give

extra inspection time during the recycle period. A major consideration willbe the waste

package insertion on the pad, which is not contemplated in today's Space Shuttle model.
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Ground Operations for Nuclear Payload

A flow diagram of anticipated ground operations for nuclear waste packages is shown

in figure 35. A special receiving and inspection station would allow launch site person-

nel to provide a confidence check of the waste package upon its receipt at the launch site.

The unit is then transported to storage. Storage in an air-conditioned (new) facility is

required until the schedule allows the package to be launched. An inspection of the pack-

age is required after storage removal and prior to affixing the handling mechanisms and

other hardware for flight. A nuclear waste package transporter would transport the

waste package to the pad lifting device. Man-tended attachments could be accomplished

in the payload servicing tower. Once the waste package was aloft, transfer to the in-

sertion arm and insertion into the orbiter cargo bay would be accomplished.

A remotely operated mechanical docking adapter to connect the waste package to the

tug is envisioned that will allow waste package installation and integration to the tug as

late in the countdown as possible. This will permit final preparation of the shuttle with

manned attendance until the waste package arrives. A short launch sequence follows

during which the orbiter payload bay is closed, the insertion arm is retracted, and the

terminal countdown is culminated in launch.

Should a launch-pad abort be required, the insertion arm can undock the waste pack-

age and return it to a remotely controlled transfer vehicle for return to the waste pack-

age storage facility.

Recovery From Abort Near Launch Site

Although not addressed at this time, some thought has been given to the abort mode

and recovery. A concept under consideration is a large armored vehicle with 4-meter

pneumatic wheels which can traverse dense underbrush. A dry-ice bath container would

be carried piggyback for emergency waste package cooling. An alternate scheme sug-

gested is the use of a hovercraft or helicoper for prompt (river) recovery.

ASCENT OPERATIONS

During the ascent the solid rocket motors (SRM) and the main engine will provide

thrust. The two SRM's will be dropped into the Atlantic Ocean following a prescribed

sequence. The main engine will continue to boost the Space Shuttle to an elliptical orbit.
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ORBITAL OPERATIONS

The following important operations take place during the orbitalphase of a mission.

Although they are not part of this study, reference 17 presents detailed examples of

operations involving Space Shuttle, payloads, and tugs (both singleand multiple).

Parking Orbit

After the shuttle-orbiter reaches the initial orbit (assumed to be 100 km by 370 km),

transfer maneuvers by an orbital maneuvering system will inject the orbiter into a cir-

cular parking orbit at 370 kilometers. The altitude for this parking orbit is based on

overall safety for both the orbiter and the waste package. This parking orbit altitude

provides a long-term (months) decay orbit to ensure retrieval for a waste package in

case of a failure at that point in the mission.

As soon as possible the orbiter bay doors are to be opened to allow the heat from the

nuclear waste package to radiate out to space (blackbody radiation).

Deployment of Nuclear Waste Package with Tug

All physical interfaces with the orbiter are disconnected. The nuclear waste pack-

age and tug or the tug alone is deployed from the bay. A separation maneuver is per-

formed by the orbiter to ensure its safe distance from the tug prior to further operations.

Orientation and Firing of Tug

The orbital position of the tug relative to the required destination is determined.

Then the tug performs an orientation maneuver and initiates the firing sequence. In case

of a malfunction of a tug, the orbiter may be required to retrieve it (either the tug with

the waste package or the tug or the waste package alone) for return to base.

Following any abort after the package has been deployed from the Space Shuttle, it

will be desirable to retrieve the waste package for either mounting it to another space

vehicle (tug) or returning it to base. If the abort occurs after Earth-escape velocity is

achieved, the package could not be recovered with any presently envisioned vehicle. This

condition may require selecting trajectories that would limit the possibility of encounter-

ing the Earth ifan abort occurred past Earth-escape velocity.
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TRAJE C TOR Y CONSIDE RATIONS

This section discusses primarily Space Shuttle trajectories and some abort modes of

the shuttle and the tug which are of concern for nuclear waste disposal missions. Shut-

tle performance data and other shuttle information are based on the shuttle baseline con-

figuration (ref. 16).

The Space Shuttle, as shown in figure 5, is a launch vehicle composed of the re-

coverable manned orbiter containing the main engines, an external drop tank containing

the orbiter's propellants (liquid hydrogen and liquid oxygen), and two solid rocket motors.

The space tug, presently under study by NASA, is an upper stage which would be de-

signed to inject a payload into orbits beyond the capability of the shuttle. Both expendable

and reusable configurations are under study as discussed in the section POTENTIAL

SPACE TRANSPORTATION VEHICLE PERFORMANCE AND COST.

SHUTTLE ASCENT

For the type of mission discussed herein, the Space Shuttle, carrying a nuclear

waste package and a space tug within its cargo bay, would be launched from the Kennedy

Space Center into an elliptical orbit of approximately 100 kilometers by 370 kilometers.

Figure 36 shows the sequence of events for such an ascent trajectory and return.

At lift-off, the SRM's and the orbiter's main engines fire in parallel. When the

SRM's have used their propellants, their cases are separated from the orbiter, drop into

the ocean downrange, and are recovered. The orbiter's main engines continue burning

to orbit insertion, at which time the expendable external propellant tank is separated

from the orbiter and then deorbited by a small retrorocket. Subsequently, the orbiter

circularizes its orbit at apogee by using its orbital maneuvering system. It then deploys

the tug with its nuclear waste package. After performing its on-orbit mission opera-

tions, the orbiter and its crew return to Earth.

SELECTION OF PARKING (DEPLOYMENT) ORBIT ALTITUDE

For this mission a parking altitude of 370 kilometers, which has an orbital decay

time of several months, has been assumed. This time period would be sufficient for

remedial action if any problem should occur after deployment of the nuclear waste pack-

age and tug and shortly after tug ignition. A second tug would either be stationed in orbit

or could be brought up to retrieve the waste package or to properly inject it to its desti-

nation. Such a contingency mission would require rendezvous and docking with the waste

package after it was undocked from a disabled tug.
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INTACT SPACE SHUTTLE ABORT

In the event of a premature mission termination prior to the deployment of the tug

and the waste package, the orbiter would return them to Earth, as it has the capability

for intact abort throughout its mission. The ascent to the initial orbit takes approxi-

mately 8 minutes. If an abort were initiated during approximately the first 5 minutes

after lift-off, the orbiter could fly back to the launch site. This return flight, depending

on the time of abort decision, could be on a glidepath or it could be a powered maneuver

using the main engines.

If the abort were initiated between approximately 5 and 6 minutes after lift-off, the

orbiter could perform a so-called once-around abort during which it would land at the

launch site after circling the Earth. Figure 37 shows several ground tracks for such

aborts for launch azimuths from 90 ° to 130 ° E. The figure indicates the entry points for

a landing at Kennedy and the approximate maximum capability landing envelope for the

90 ° azimuth trajectory based on an orbiter cross-range capability of 2590 kilometers.

An orbiter on any of the trajectories shown could land at either Kennedy or another pre-

selected base.

For aborts after more than 6 minutes of flight along the ascent trajectory, the orbi-

ter would have the capability to achieve a parking orbit from which it would deorbit later

and land in its normal manner.

UNCONTROLLED ABORT DURING ASCENT PHASE

There is the possibility - although it is of a Very low probability - that a malfunction

could occur during the Space Shuttle ascent phase which would result in an uncontrolled

impact on Earth by the shuttle. In such a case the potential points of impact, which are

called the instantaneous impact points (HP), would lie on one of the curves shown in fig-

ure 38 for different launch azimuths (not considering dispersions and atmospheric

effects). The instantaneous impact curves are over water with the exception of a very

short dwell time over the southern part of Africa, of the order of 1 second for the 90 °

launch azimuth. Such an impact would occur if the malfunction were to occur during the

period of approximately 2 to 3 seconds prior to orbiter main engine cutoff.

If necessary, the short dwell time over Africa can be further reduced by increasing

the launch azimuth above 90 ° at the expense of a reduced payload capability (ref. 3).

There are, however, limits to this because of the Caribbean Islands. In order to provide

an adequate miss distance for those islands, the highest launch azimuth generally used

for current expendable launch vehicles is 108 °. However, by using a special type of as-

cent trajectory, the vehicle could avoid passing over land entirely on ascent. With such
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a trajectory, commonly called a dogleg, the shuttlewould initiallyfly an easterly head-

ing, thereby avoiding lIP overpasses over the Caribbean area and would then yaw right

to swing the lip trace around the southern tip of Africa (fig.39). Preliminary studies

have shown that a dogleg trajectory with a launch azimuth of 97.5 ° maximizes shuttle

payload to approximately 17 700 kilograms, as compared with the due-East trajectory

shuttlepayload capabilityof 29 500 kilograms. The lIP trace of this dogleg trajectory

provides an adequate miss distance for the Caribbean Islands, South America, and

Africa. Such dogleg trajectories are presently not considered because of the high in-

herent safety of the manned Space Shuttleand because the trajectory reduces the payload-

carrying capabilityof the shuttleto such an extent that a waste package and a fullyfueled

tug could not be carried to a parking orbit. This problem could be handled by carrying

only nuclear waste packages in the shuttleascending on a dogleg trajectory and carrying

the tug in another shuttleon a conventional trajectory. The package and the tug would

then be mated in orbit. This concept, however, adds further complexity to the mission

and greatly increases the number of launches.

We have been discussing a failure aboard an ascending shuttlewhich could precipi-

tatean uncontrolled abort leading to a potentialland impact. An uncontrolled abort could

also occur during an orbiter return to Earth with a waste package onboard.

UNCONTROLLED ABORT DURING ORBITAL MISSION PHASE

A malfunction, such as thatof a navigation, guidance, and/or control system, during

a tug burn could possibly change the tug trajectory intoan inadvertent uncontrolled re-

entry trajectory leading to an Earth impact. Such undesirable trajectories can, how-

ever, be avoided by an error-sensing device which cuts off engine thrust in the event of a

malfunction of those systems. In such a case, the tug with itswaste package would re-

main in an ellipticorbit, and another tug would be dispatched to either retrieve the pack-

age or send itto its mission destination.

NUCLEAR SAFETY CONSIDERATIONS

The fundamental philosophy of nuclear safety for radioactive waste disposal missions

in space can be stated as follows: Potential radiation exposure and harmful contamina-

tion of individuals, the population at large, and the ecology shall be negligible. This

statement also applies to celestial bodies, as required by the treaty to promote peaceful

exploration and use of outer space, which was signed by 60 nations including the United

States. For operations during all phases of a nuclear waste disposal mission, exposure

and contamination should be negligible for the population at large and should be within
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the permissible standards for the personnel involved in the mission.
The nuclear waste disposal missions discussedherein are basically like other

shuttle/tug missions that will carry radioactive materials to synchronousEarth orbit or
to planetary orbits. However, much larger amountsof radioactive material would be
flown or,the spacedisposal missions.

This section presents the results from an evaluation of the responseof the nuclear
waste packagedesign to potential accidents during the various phasesof waste disposal
missions. Becausethe mission hardware and systems and the mission parameters are
in a preliminary definition phase, only a qualitative evaluation could be performed.

NUCLEAR SAFETY REQUIREMENTS

The nuclear waste imposes certain requirements on the package design, its support-

ing equipment, and mission operations. Some of these requirements are as follows:

(1) Waste package requirements:

(a) Subcritical design under all conditions

(b) Waste material encapsulation

(c) External radiation shielding

(d) Reentry protection

(e) Impact protection

(f) Fire and explosion protection

(g) Transponders

(2) Shuttle orbiter supporting equipment:

(a) Temperature control

(b) Monitoring equipment

(3) Operational requirements:

(a) Parking orbit altitude with long decay time

(b) Recovery preparedness

(c) Future encounter avoidance

(d) Means of orbital retrieval

ACCIDENT MODEL 2

Potentialaccidents are discussed qualitativelyin this section, indicatingthe environ-

ments which could be present at various times during the accidents. No probabilitynum-

bers are used because of insufficientdefinitionof the hardware and the mission.

2See also the section ACCIDENT ENVIRONMENT for data used in the preliminary

design.
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Ground Handling

Provided that proper procedures are established, the probability of an accident

while handling the nuclear waste package, including installation within the Space Shuttle

cargo bay, will be extremely small.

Launch Pad Abort

A potential accident at or immediately after launch, causing the Space Shuttle to ex-

plode and burn, would expose the waste package to an adverse environment. The en-

vironment created by such an accident would be blast overpressures, impact of frag-

ments, fireball, impact on the ground, and residual liquid- and solid-propellant fires.

The residual fire of the solid propellant could last about 5 minutes at a temperature of

approximately 2400 K.

High-Velocity Impact

If a malfunction should cause the Space Shuttle to make a 180 ° change in direction

soon after launch, a powered impact could occur. The resulting environment would be

similar to that encountered during launch-pad abort, except that the impact would be at

high velocity. However, a portion of the propellants would have been consumed, the re-

sidual fires would be of shorter duration, and the fireball would be smaller. The pre-

sence of a crew onboard which could take action to prevent the occurrence of such an

accident would reduce it to a very low probability.

The actual impact response for the waste package itself would be lower than that of

the shuttle because of the cushioning effects of the orbiter structure.

Failure During Ascent

Many ascent failures and malfunctions which would lead to a catastrophic failure in

an unmanned space vehicle would cause mission changes or aborts, but not an accident,

in the manned Space Shuttle (see section INTACT SPACE SHUTTLE ABORT). However,

there remains a possibility, although small, that a catastrophic accident could occur on-

board the Space Shuttle. In such an accident, if the shuttle remained intact, the result

would likely be impact at relatively low velocity.

If an explosion of the main propellant tanks of the shuttle should occur during ascent,

the blast overpressure could damage the reentry shield and change the reentry character-
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istics of the package. In the worst case, the reentry shield could be stripped off, leav-

ing the smaller impact shell as the outer shield. The package would continue to ascent

until its vertical velocity component had been attenuated by air resistance or by gravity

forces. The spherical package would then fall back toward the Earth and the velocity

would increase either to terminal velocity if in the atmosphere or to a higher velocity if

considerably above the effective atmosphere. In the former case the terminal velocity

would be within the impact capability of the waste package, especially for water impacts.

Impacts on water would be much less severe than on land or hard surfaces. For the

cases where the waste package ascends above the atmosphere the package would accel-

erate in its gravity fall and might exceed terminal velocity prior to entering the atmo-

sphere. After entering the atmosphere the waste package should slow down until it either

reaches terminal velocity or impacts the Earth.

The impact velocity for the waste package was determined by assuming the accident

occurred at various times throughout the boast phase (~ 500 sec). For those cases where

sufficient fuel and air density could cause extensive damage to the reentry shield the im-

pact velocity did not exceed 360 meters per second. Although this value is above design,

the impacts should occur on water, and the spherical waste package is not expected to be

damaged for water impacts at that impact velocity. Spheres impact tested at velocities

in the range of 300 meters per second show little damage when they impacted on soil as

compared to impacting on reinforced concrete, which implies that impacts on water

would also be less severe than on reinforced concrete.

If after an explosion the waste package remained attached to the tug, any explosion

on impact (with blase overpressure, fragments, a fireball, and a liquid-propellant fire)

would be of considerably lower magnitude than during a launch-pad abort because of the

relatively small quantity of tug propellants. If after an explosion the waste package was

detached from the tug, the impact velocity would be less than design since the package

would not be slowing down from a high reentry velocity, but would be merely in a free

fall or at terminal velocity. If the reentry shell was damaged, this terminal velocity

would be approximately the same as the impact design velocity.

Crash Landing

There is a possibility that the Space Shuttle orbiter will make a crash landing. If

there was insufficient time to dump the tug propellants prior to the landing, overpres-

sures, impacts of fragments, a fireball, and propellant fires could occur.
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Uncontrolled Reentry ann Impact

Uncontrolled reentry and impact accidents could occur after the waste package has

been deployed from the orbiter. There are two resulting possibilities: the waste pack-

age could reenter by itself or still attached to the tug. The environment encountered by

the waste package, the tug/waste package, or the tug/tug/waste package depends on the

atmospheric entry velocity and the entry angle. (In this exploratory study, only the ver-

tical reentry of the waste package was analyzed. ) The waste package would be exposed to

reentry heating and thermal stress. If the heat shield of the waste package were to fail,

the waste material encapsulation could fail also and expose the radioactive waste to the

reentry and impact conditions. The impact velocity of an intact waste package as de-

signed is 300 meters per second. It is virtually impossible because of design of the tug

for it to remain attached to the waste package throughout the atmospheric reentry.

Postimpact Conditions

After impact the waste package may be exposed to environments which could cause

melting, oxidation, and/or corrosion and might eventually cause some release of the

radioactive material and/or an increase in the external radiation dose. For any post-

impact condition the external radiation dose represents a potential hazard. The intact

package was designed to have an external dose of 1 rem per hour at 1 meter from the

surface of the package. If breaching or deformation of the package should occur, the ex-

ternal radiation could increase, whether or not radioactive material was released.

ANALYTICAL RESULTS

Only a qualitative evaluation was made of the possible release of radioactive mater-

ials and the potential hazards resulting from external radiation. A quantitative evalua-

tion of such a release and the determination of probabilities of events can only be made

once a more detailed hardware, system, and mission definition has been made. Some of

the analytical methods have been confirmed with experiments, such as large-sphere im-

pact tests at velocities greater than 300 meters per second and fragmentation tests at

velocities to 1500 meters per second.

Nuclear Waste Package Response

The basic nuclear waste package design used in the analysis was the single-package
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design for disposal of actinide waste containing 1 percent of the fission products shown in

figure 23. Where possible, the analytical methods were checked against experiments

that were related to the accident conditions. As a conservative approach the analysis for

launch-connected accidents was performed on the waste package without the reentry

shell. This approach was selected to allow for the possibility of removal of the outer

shell during an explosion.

Overpressure. - An accident at the launch pad which results in an explosion of the

main liquid propellants could produce a blast overpressure of approximately 150 atmo-

spheres (assuming a mixing mode yielding not more than 20 percent TNT equivalent).

The stainless-steel impact shell with a radius of 0.68 meter and a 2.54-centimeter-

thick wall can withstand an external pressure of 175 atmospheres without yielding. Since

this limit is greater than the overpressure, the nuclear waste package will not be

breached by the blast overpressure.

Fragments. - During explosion-type accidents, fragments of varying sizes and of

various materials (predominantly aluminum) could impact the nuclear waste package at

varying impact velocities. The code (PISCES 2DL) used in the impact study (appendix)

was applied to analyze the fragment impact on the stainless-steel vessel. The analysis

assumed aluminum fragments (sharp and blunt)impacting at 1520 meters per second,

which exceeds previous velocities considered (fig.7). The results indicated the impact

shell would not be penetrated from fragments from a launch explosion.

In addition to the analytical study, an experimental testwas set up in which aluminum

pelletswere fired at a stainless-steel sphere with a wall thickness of 1.58 centimeters.

The results presented in reference 18 indicated no penetration at velocities to 1360

meters per second for aluminum pelletsof 6.6 grams and no penetration at velocitiesto

1280 meters per second for aluminum pelletsof 13.3 grams. These conditions are com-

parable to the particle masses achieving high velocity in explosions of liquidpropellants

in thin-wall aluminum tanks.

Fireball. - Comparison with other capsules involved in fireballtests indicated that

because of the short duration (seconds) of the fireballand the large mass of the nuclear

waste package, no serious damage should result to the nuclear waste package from the

fireball.

Residual propellant fires. - Of the two types of fires, the solid propellant produces

the higher temperature (2360 K). In order to evaluate the response of the nuclear waste

package to the solid propellant, a heat-transfer model was established which consisted

of 72 nodes for the various layers of material. The heat-transfer calculations (convec-

tion, radiation, and conduction) were performed using code CINDA (ref. 19).

The results of these calculations are shown in figure 40. Both the surface tempera-

ture and the surface heat flux are plotted. Initiallythe surface heat flux is high since the

temperature of the impact shell is low. As the surface temperature increases, the
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radiation effect from the propellant fire diminishes and the heat flux drops. Selecting an

emissivity of 0.3 resulted in a close match to experimental results for heat flux to the

surface. The temperature of the impact shell approaches the melting point in about

5 minutes. Because of the high temperature, a breach of the outer impact shell is pos-

sible if the solid-propellant fire were to last for more than 5 minutes adjacent to the

package. It is estimated that the fire could last for 5 minutes. Although in this situa-

tion, melting of the outer shell is possible, other layers would prevent release of the

radioactive nuclear waste. However, the shielding (LiH) could be lost, and thus the ex-

ternal dose rate would increase. Recovery therefore would require a shielded or re-

motely operated vehicle (see the section GROUND SUPPORT REQUIREMENTS).

Atmospheric reentry. - In the event of an aborted mission where the nuclear waste

package returns to Earth in an uncontrolled manner (i. e., not carried by the orbiter),

there will be many possible combinations of velocity and angle of reentry. The case

which was analyzed and which resulted in establishing the required thickness of the re-

entry shell (fig. 21) was vertical reentry at 11 kilometers per second. This type of re-

entry would expose the reentry shell surface to a peak heat flux of 300 kilowatts per

square centimeter. This high heat flux would last from 1 to 2 seconds (fig. 8).

For vertical reentry the reentry shell has sufficient thickness to prevent melting

through to the impact shell. The calculations indicate that the impact shell temperature

does not increase under this condition, nor does it increase for orbital decay reentry

(fig.41).

Although itwas assumed the vertical reentry might be the most severe condition on

the reentry shell, itmust be checked for other reentry conditions.

Impact. - Following an uncontrolled abort (i.e., the nuclear package not brought

back by a controlled shuttle), the package will impact the Earth. Based on the design of

the reentry shell, the impact velocity should be 300 meters per second or less. This

velocity would only be exceeded if there was an abort with a tug attached and thrusting in.

Because of the design, there would be a very low probability of this occurring.

Based on the experiments and analyses discussed in the appendix, it appears that in

most impacts on Earth the package would be buried in the soil or at the bottom of bodies

of water with relatively little damage to the outer shell. However, if the package lands

on a surface that does not absorb any of the energy, such as a solid noncrushable surface,

the waste package would probably be breached. This might or might not result in re-

lease of radioactive waste, since the waste is a small percentage of the matrix and is

encapsulated with the molybdenum and tungsten protection layers. It can be assumed that

during impact on hard surfaces the waste package would be deformed and possibly

breached. There would be some increase in the external dose if some of the outer lith-

ium hydride were lost. However, most of the shielding is supplied by the tungsten and

the matrix.

51



After impact. - After an impact the waste package will be either buried beneath the

surface, partially buried, or on the surface in either an intact or breached condition.

A series of calculations were performed for various degrees of burial and are reported

in reference 20. The results (table 21) indicated that for no burial or partial burial the

vessel would not rupture within 23 days (approaching equilibrium condition). For deep

burial, all calculations except those in which the waste produced less than 2 kilowatts of

thermal power resulted in rupture of the impact vessel. This rupture was caused by the

increased temperature and pressure from helium released in the decay process and from

dissociating LiH. The rupture would in all probability be a minor crack to relieve the

pressure. The use of pressure-relief valves or filters, a means used on nuclear pack-

ages already launched, could solve this problem.

There were no experimental data to determine whether or not the surfaces would

melt. The calculations did not account for any material changes in the soil; however,

its conductivity was varied with temperature. There have been tests conducted which in-

dicate that the surrounding soil properties can change and provide a better heat sink.

If the impact vessel remains intact, there will be no oxidation and no corrosion for

extended periods of time. If the outer vessel is breached, there would be some loss in

the effectiveness of the shielding. The waste material which is already in the oxide form

should not react with the surrounding environment. The radiation level in the immediate

area would increase somewhat because of the loss or degradation of the shielding.

Therefore, it would be desirable to locate and recover the waste package as soon as

possible.

RECOVERY OF NUCLEAR WASTE PACKAGE

For aborts near the launch pad and during early ascent the vehicle will be tracked.

Under these conditions the waste package can be recovered without undue hazards to

people in the vicinity. For aborts which could occur in later phases of the mission the

waste package would be tracked but the determination of the impact location would gener-

ally take considerable time and recovery would be delayed. If the waste package were to

impact in deep ocean, it probably could not be recovered.

If an abort were to occur when the tug with the waste package attained or exceeded

the AV for Earth escape, the waste package could be inadvertently put into an orbit

which could result in an Earth encounter at some future date. Depending on the orbit,

the encounter could be hundreds to thousands of years later. During this time, the ra-

diation level from the actinides and fission products will diminish as indicated in fig-

ure 42. Although this would reduce the potential hazard, a considerable radiation level

still remains. Locating the impact point under such conditions would be extremely
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difficult andthe inclusion of a long-lived transmitter for locating the waste package prior

to Earth encounter would be desirable.

NUCLEAR SAFETY CONCLUSIONS

Within the framework of this exploratory study, nuclear waste disposal missions,

as described in this report, appear feasible. The nuclear waste package design concept

with its various protection shells and the reentry system will prevent release of radio-

active waste under most accident conditions. However, much study, development, and

testing effortwill be required to confirm the concept and to have the confidence to firmly

plan such missions. R must be realized, however, that there are certain risks involved,

however small, which would have to be balanced against the benefits to be derived from

removing the dangerous long-lived radioactive waste from man's present environment

and relievingfuture generations from the responsibilityof protecting themselves from

our radioactive waste.

The safety study of accident models and package responses points out certain key

issues regarding the attainment of overall nuclear safety for space disposal of nuclear

waste packages:

(i)The waste package should be designed to maintain integritywithout releasing any

of its radioactive contents throughout all potentialhazardous events during ail mission

phases.

(2)Radiation emanating from the package, whether itis intactor damaged, has to

be held to a minimum, so that recovery can be accomplished without undue exposure to

the population. (This might require development of locating and recovery means for

Earth-impacted waste packages. )

(3) Potentialaccident conditions that could lead to uncontrolled reentry of the waste

package have to be minimized. This would be accomplished by careful selection of tra-

jectories and the use of highly reliable vehicles.

Itwould be desirable to develop vehicles for retrieving waste packages from accident

orbitsbeyond Earth escape.

COSTS FOR SPACE TRANSPORTATION SYSTEM

The total cost for disposal of radioactive nuclear waste in space must inchde the

cost for separation, encapsulation, storage as assumed herein, packaging, transporta-

tion to the launch site, launch site, launch vehicle, and operations. This report was

primarily concerned with the costs involving the launch and operations. The other costs

are discussed to give a relative comparison with the space transportation costs. The
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vehicle costs, launch costs, and operations costs are essentially a. function of the number

of vehicles and the launch rate. These costs are also a function of the destination and

are discussed on that basis as well. Two representative destinations are used: high

Earth orbit and solar system escape.

The Kennedy Space Center was used as the reference launch facility as discussed in

the section GROUND SUPPORT REQUIREMENTS, and the facility costs are based on the

general considerations presented in that section.

SPACE TRANSPORTATION COSTS

The space transportation costs presented in this report include costs of technical

support and operations.

Launch Costs

For the two representative destinations the most cost-effective vehicles were selec-

ted for determining the space transportation costs. The vehicles and their payloads are

obtained from tables 16 and 17.

High Earth orbit. - From table 16 the most cost-effective vehicle was the Space

Shuttle with a Centaur of optimum size (approx. 17 240 kg of propellant). The launch cost

for this vehicle is estimated at $16.3 million ($10.5 million for the reusable shuttle

launch and $5.8 million for the optimum expendable Centaur). These costs are based on

1972 dollars, 100 total flights per vehicle, and not more than 40 flights per year. The

shuttle launch cost of $10.5 million includes propellant costs and operational costs based

on the given flight rate. If the flight rate is increased to 140 per year, the operational

cost per flight would be reduced by as much as 75 percent of the operational cost for

40 flights per year. The estimated reduction in operational cost per flight, which is a

small portion of the launch cost, was based on the following guidelines and assumptions:

(1) Guidelines:

(a) All payloads are launched in an easterly direction from the Kennedy Space

Center.

(b) The current Space Shuttle development program and an operating model of

40 flights per year are used as the baseline.

(c) Payload handling and checkout are not included in the cost.

(d) Estimates are in fiscal year 1972 dollars.

(e) An orbiter (4.5-m by 18-m compartment; 29 484-kg capacity) and twin solid

rocket boosters are used for estimating propellant cost (as included in the total

cost).
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(2)Assumptions:

(a) The cost-per-flightestimate is only a rough order of magnitude.

(b) Additional facilitiesand equipment to handle more than 40 flightsper year

are discussed elsewhere (fig.34).

(c) The overhaul of the orbiter main engines and the operations and refurbish-

ment of solid rocket booster casings are not included.

(d) Vehicle and support manpower are considered for the additional vehicles,

facilities,and equipment needed for more than 40 flightsper year.

Solar system escape. - This mission requires more than one Space Shuttleper nu-

clear waste payload (singleor multiple packages). As noted in the section POTENTIAL

SPACE TRANSPORTATION VEHICLE PERFORMANCE AND COST, at least two tugs are

necessary to supply to a sufficientlylarge payload the AV required to escape the at-

tracting forces of our solar system. Thus, two shuttlesmust be used to launch these

tugs. The results presented in table 17 indicate the most cost-effectivemethod for the

solar system escape destinationinvolves perigee propulsion. In this method, two shut-

tles, a reusable tug, and an expendable tug are used, for a total cost of $28.75 million

per mission. The effectof launch rate on cost is the same as for the high Earth orbit

destination.

Ground FacilitiesCosts

The the section GROUND SUPPORT REQUIREMENTS, itwas noted that many of the

existingfacilitiescould be used on the basis of 20 flightsper year. Beyond that rate,

additionalfacilitieswould be required. In addition to launch and operations facilities,a

new facilityfor receipt and inspection of nuclear waste packages and for storing the pack-

ages in a controlled environment would be required. Cost of thisfacilitywould be ap-

proximately $4 million.

As the number of launches exceeds 20 per year, additionalfacilitiesare needed, as

presented infigure 34. Itwe project to 100 launches per year, an additional $136 million

(+20 percent) would be needed for mobile launchers, a new maintenance and checkout

facility,a new crawler and maintenance facility,a new launch pad, and a new solid

rocket booster disassembly facility.

From the results presented in the section NUCLEAR WASTE PACKAGING, the num-

ber of shuttle launches for package II(actinidewith 1 or 0.1 percent of the fission prod-

ucts) would not exceed the 100-launches-per-year rate for 30 years after the start ifthe

high-Earth-orbit destinationwere selected. For the destinations of the solar-system-

escape type, after the year 2000 some other arrangement for launch facilitieswould be

required since itwould be difficultto handle more than 120 to 140 launches per year at

Kennedy. For package ]XI(pure actinides), thislaunch rate would not be exceeded.
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Other SupportCosts

After the launch, other facilities come into use, such as tracking and monitoring

stations, recovery teams, and possibly facilities for handling the Space Shuttle at other

locations. Most of these facilities will already be in existence and would probably only

need modifying. These modifications should be an order of magnitude less than the costs

for the ground facilities.

Total Space Transportation Costs

The total transportation costs for both representative destinations are presented in

table 22 for a launch rate of 40 per year. The facility cost per launch, which is based on

a 30-year period, increases from $0.01 million to $0.07 million if the launch rate in-

creases by 100. In going from 40 to 140 flights per year it is expected that the opera-

tional costs per flight, which are small, will be reduced by as much as 75 percent. If

more than 140 flights per year are required, a different approach to launching would be

necessary.

For the disposal of all fission products (package I), 140 shuttle flights per year

would be required at the very beginning of any space disposal program based on present

and expected amounts of fission products. For disposal of only the actinides (package II

or l:II), the launch rate of 140 per year would not be reached for a high Earth orbit or a

solar orbit during the time period considered. For solar system escape, this launch

rate would be reached by 1993, 1999, and 2010 for actinides containing 1, 0.1, and 0.001

percent of the fission products, respectively. All package designs were shielded to re-

duce the external dose rate to 1 rein per hour.

By redesigning the launch vehicles and/or tugs to accommodate more payload, the

number of launches would be reduced. If improved packaging designs decrease the ratio

of total package weight to radioactive waste weight, the number of launches would also

be reduced.

ESTIMATES OF SEPARATION, ENCAPSULATION, AND PACKAGING COSTS

It was not the intent of this study to determine the cost of preparing the waste and

packaging it for space disposal. However, some indication of the relative costs is needed

to put the costs for space disposal in the proper perspective. The cost for processing

spent fuel is estimated at $30 000 per metric ton of fuel containing radioactive waste.

Assuming 33 000 megawatt days of operation per metric ton, each metric ton would

56



contain about 1 kilogram of actinldes, excluding uranium, and 35 kilograms of fission

products. Additional cost is required to remove the fission products from the actinide

waste. Rough estimates by Battelle Pacific Northwest Laboratories indicates this addi-

tional cost may be $30 per gram of actinides to remove all but 1 percent of the fission

products and $60 per gram to remove all but 0.1 percent of the fission products. This

would bring the estimated cost of processing and separation for space disposal to

$60 000 to $90 000 per kilogram of actinides with 1 and 0. 1 of the percent fission prod-

ucts, respectively. For 0.001 percent of the fission products remaining in the waste,

the cost was extrapolated to $150 000 per kilogram of actinldes. For fission products

only, the processing and separation cost is only $860 per kilogram. The encapsulating

and packaging cost for actinides is estimated at $650 per kilogram. This cost is small

relative to the space transportation cost and the processing and separation costs.

ESTIMATED TOTAL COSTS FOR PREPARING WASTE,

PACKAGING, AND TRANSPORTATION

The estimated total costs for space disposal to the two representative destinations

are presented in table 23 for a launch rate of 40 missions per year.

Based on the assumptions in this report, the vehicles selected, and the package de-

signs, the estimated space transportation cost per kilogram of actinide waste decreases

as the percent of fission products remaining in the actinlde waste decreases. However,

obtaining the more pure actinlde waste is more costly. Thus, there should be a mini-

mum cost as a function of fission products remaining in the long-lived actinide waste.

In any case, the costs must be related to the cost for producing electrical power. This

is discussed in the next section, ECONOMICS.

For package I, in which only fission products are being disposed of, the total cost

for space disposal per kilogram of waste is $88 060 for high Earth orbit and $395 000 for

solar system escape. For package II (actinide waste with 1 and 0.1 percent of the fission

products) and package I11 (actinide waste with 0. 001 percent of the fission products), the

total cost for space disposal per kilogram of actinide waste is $116 700, $126 500, and

$169 000, respectively, for high Earth orbit. Of this $56 700, $36 500, and $19 000,

respectively, represent the transportation costs. For space disposal of the purer acti-

nide waste the predominant cost is that of processing and separation. The space trans-

portation cost for actinides decreases with increased separation of fission products from

the actinides.

For actinide waste escaping the solar system, the estimated cost per kilogram for

space transportation, processing, separation, and packaging is $314 500 for 1 percent of

the fission products remaining in the actinides, $240 500 for 0.1 percent of the fission
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products, and $2,i3 400 for 0.001 percent of the fission products. The transportation

cost per kilogram is $254 500, $150 500, and $93 400, respectively. These costs may

appear high, but __t should be remembered that every kilogram of actinides in the waste

represents approximately 245 million kilowatt-hours of electricity. And at 2.4 cents per

kilowatt-hour, that amount of power would cost $5 880 000. This subject is discussed in

more detail in the following section, ECONOMICS. The yearly estimate for total space

transportation co3ts, excluding separation costs, is presented in figure 43.

ECONOMICS

ECONOMIC ASSUMPTIONS

In order to place the large total cost for disposal of radioactive nuclear waste into

space in its proper perspective, it is compared with the cost to the consumer of nuclear

electric power. This comparison is based on the following assumptions:

(1) The cost to the consumer of nuclear electric power is 2.5 cents per kilowatt-

hour (of which 0.8 _/kW-hr is the cost to produce the electricity).

(2) The amount of actinides (less the uranium isotopes) produced in generating

1 kilowatt-hour in a nuclear powerplant is 0.409x10 -8 kilogram.

(3) The amount of fission products produced in generating 1 kilowatt-hour in a nu-

clear pewerplant is 0. 135x10 -6 kilogram.

(4) The cost for processing the fuel is not included since it would be the same for

most disposal methods.

(5) The cost for separation, to be determined by the AEC, was not included.

(Estimates are shown in the preceding section. )

(6) Cost of 10-year storage prior to encapsulation for transporting into space is

0. 0001 cent per kilowatt-hour.

EFFECT OF SPACE DISPOSAL OF RADIOACTIVE NUCLEAR WASTE ON

COST TO THE CONSUMER OF ELECTRIC POWER

These assumptions and the cost for space transportation per kilogram of waste for

the ,tifferent package designs for each type of waste considered (packages I, II, and EI)

were used to determine the cost of space disposal in terms of the cost of electricity.

This is presented in tables 24 and 25 for package I (fission products only), package II

(actinides with 1 and 0.1 percent of the fission products), and package Ill (pure actinides

with and without curium, respectively). All packages assumed an external dose rate of
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1 rem per hour measured at 3 meters from the center for package I and at 1 meter from

the surface for packages II and HI.

The design data for the packages to be launched by the shuttle/tug system were also

applied to the expendable launch vehicles. This approach is conservative because the

package design is based on the radiation shielding criteria for the general public. If

these criteria were neglected, a higher dose constraint could be used since there would

be no crew onboard the expendable vehicle. For the large payloads to high Earth orbits

obtainable with the Saturn V, a weight penalty for cooling the higher heat load during

launching and staging would have to be subtracted prior to determining the package

weight.

From tables 24 and 25 it is apparent

(1) That the Space Shuttle provides the lowest launch cost for space disposal of

radioactive waste

(2) That the space transportation cost to the consumer is low, less than 5 percent of

the cost of electricity, for disposal of the actinide waste to any of the repre-

sentative destinations, but high for disposal of all the fission products

PERTURBATIONS ON COST TO THE CONSUMER

Effect of Discount Rate and Time on Cost to Consumer

In the space disposal of radioactive waste, the actual disposal of the material occurs

many years after the production of the electrical energy. This time period can be used

to reduce the cost to the consumer who uses that energy. If a charge is made at the time

the electrical energy is used and the money placed in a fund with an annual interest, the

fund would then increase at some rate until the designated time for launching. The stor-

age period used in this study was 10 years. In reality, storage could be extended to any

time period and would depend on the conditions imposed on ground storage, industrial

accumulations, acceptable launch frequency, and the desirability of disposing of the

waste.

The data in figure 44 show the fractional amount of the actual space transportation

cost from tables 24 and 25 that would be charged at the time the consumer used the elec-

trical energy. The data are based only on the time between initial charge and actual

launch preparation. The interest rate would be compounded on an annual basis. How-

ever, the costs are based on 1972 dollars and do not take into account possible increased

costs.

Example 1. - Assume that it is desirable to transport actinides with 0.1 percent of

the fission products to solar system escape. The cost (table 25(b)) would be 0.061 cent
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per kilowatt-hour. If it were decided to transport to space after 30 years, the cost to

the consumer, charged at the time of electrical production, would be only 0.015 cent per

kilowatt-hour (assuming a 5-percent interest rate). This charge is less than 1 percent of

the present (1972-73) cost to the consumer for electrical energy.

Example 2. - Assume that after 50 years the fissioning process for obtaining elec-

trical energy is replaced by another means and the decision is made to take all fission

products to solar system escape. The cost (table 24) would be 5.2 cents per kilowatt-

hour. However, if the charge were made at the time of electrical production, it would

be only 0.45 cent per kilowatt-hour (assuming a 5-percent interest rate), or less than

20 percent of the present (1972-73) cost of electricity. These examples illustrate the

strong effect of an early charge for handling radioactive waste disposal on the program

economics.

Effect of Separation of Waste Material for Space Disposal

The space transportation cost per unit mass of waste decreases as the degree of

separation of the specific isotopes increases. However, the separation cost increases

as the degree of separation increases, that is, as the wastes contain less residual spe-

cific isotopes.

The rough cost estimates for separation to 1 and 0.1 percent of the fission products,

as discussed in the preceding section, were used to obtain the curves in figures 45 and 46

for the representative destinations. These costs do not reflect the reductions possible by

establishing a charge to the consumer prior to storage or disposal.

Figure 45 shows that the minimum cost of disposal of actinides in high Earth or

solar orbits occurs with actinides containing approximately 0.4 percent of the fission

products. The curve, however, is relatively flat between 1 and 0.1 percent of the fis-

sion products so that other reasons could determine which direction to take on separa-

tion. The cost for disposal of actinides to escape the solar system minimizes at around

0.1 percent of the fission products (fig. 46). The minima of figures 45 and 46 can vary

since the separation costs were estimated. However, the total cost of about 0.1 cent

per kilowatt-hour is unlikely to be greatly altered. Even this cost, which is 4 percent of

today's price of electricity to the average consumer, is not excessive. Furthermore,

the cost can be reduced by prepayment into a fund for future separation and disposal.

CONCLUSIONS

The results of this exploratory study indicate that disposal into space of the long-

lived actinides of nuclear waste (the most hazardous waste because of their long half-
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lives) appears feasible from the viewpoint of safety and reasonable from that of econom-

ics. The transportation costs for ejecting the actinides out at the solar system would

represent less than a 5-percent increase in the consumer bill for electric power gener-

ated by nuclear powerplants. Such missions involve certain risks, however small, which

would have to be balanced against the benefits to be derived from removing the danger-

ous long-lived radioactive waste from man's environment and relieving future genera-

tions from the responsibility of protecting themselves against our radioactive waste.

Firm plans for such nuclear disposal missions must be based on more study, develop-

ment, and testing.

SPACE DE STINATIONS

Of all the destinations considered, only three look promising: high Earth orbits

(above synchronous orbit altitude), nearly circular solar orbits inside the Earth's orbit,

and escape from our solar system. Only the latter destination provides a permanent

means at disposal at the waste. Sending the waste into the Sun is not possible with pres-

ently conceived vehicles on a direct mission and not practical with indirect (planet

swing-by) missions.

TRANSPORTATION VEHICLE

The currently planned Space Shuttle, supplemented by space tugs, will provide a

substantially lower cost per deliverable kilogram of waste to the promising space des-

tinations than any of the current expendable launch vehicles. Because the shuttle is a

manned vehicle and has considerable maneuvering capability, the overall safety aspects

of such a transportation system would be superior to those of expendable launch vehicle

systems. With either expendable or reusable tugs, or a combination, the three promis-

ing destinations can be attained with a sufficiently sized radioactive waste payload,

ranging from approximately 200 to 500 kilograms of actinldes per mission, depending on

the destination.

WASTE PACKAGE DE SIGN CONCE PT

The nuclear waste package design developed during this exploratory study allows

sufficient payload (radioactive waste) per package from an economic viewpoint and pro-

vides adequate protection under the accident conditions reviewed. Further effort could

optimize the design to increase its payload and to improve its safety features.
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NUCLEAR SAFETY

No quantitative risk assessment was possible because the mission hardware and the

mission parameters are in a preliminary definition phase. Only a qualitative evaluation

could be performed. With appropriate system design and operations, the risks are ex-

pected to be relatively low.

ECONOMICS

The transportation costs for space disposal of nuclear waste represent an increase

in the consumer's electric bill of approximately 1 to 5 percent. To this transportation

cost must be added the cost for separating the fission products from the actinide waste.

Preliminary data from a study conducted by Battelle Pacific Northwest Laboratories for

the Atomic Energy Commission indicate that the separation costs will be of the same

order as the cost of transportation out of the solar system. Both the cost and the launch

frequency are feasible and practical for the disposal of the actinide waste. However,

the space disposal of all fission product waste was found to be neither economically nor

practically feasible because of the large bulk rate, which would require a very high

launch rate.

Lewis Research Center,

National Aeronautics and Space Administration,

Cleveland, Ohio, November 12, 1973,

770 -18.
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APPENDIX - ACCIDENTAL EARTH IMPACT AND POSTIMPACT

ANALYSES AND EXPERIMENTAL RESULTS

In the event of an abort during ascent, in orbit, or during the propulsion phase to

destination, the possibility of an impact on Earth exists. These impacts can be at v'ar-

ious velocities and can occur in various areas of the Earth, which means impacting on

different surfaces (water, soil, sand, rock, etc.). For this reason, analyses of the nu-

clear waste package during and after impact were conducted. Some of the analyses were

backed up with experimental results from other unrelated programs having similar acci-

dent conditions.

TYPES OF SURFACES FOR IMPACT

There are many different types of surfaces that a package can encounter when im-

pacting the Earth's surface. In general, the surfaces can be divided into two categories:

a hard surface, and a soft surface. Hard surfaces include concrete, granite, and steel.

Water and the various types of soil are soft surfaces.

Seventy-one percent of the Earth's surface is water. Therefore, it can be assumed

that a high probability exists that the package will impact upon a soft surface. Most of

the remaining surface of the Earth consists of soil. There are many different types of

soil which in themselves have varying degrees of hardness, but no soil is as hard as

granite, concrete, or steel. Sandia Laboratories has conducted a number of tests on

impacting soil of varying consistency. Their work is reported in reference 21.

After water and soil the remainder of the Earth's surface consists of many types of

structures and surfaces with degrees of hardness. Examples can be urban communities

containing steel, brick, and wood buildings; airport runways and roads; and timbered

forests. In all, these impact surfaces represent a very small percentage of the Earth's

surface, and essentially either fall into the hard or soft surface categories.

DEFORMATION OF WASTE PACKAGE ON IMPACT

The largest deformations occur when the sphere impacts against a hard surface.

Impacts against concrete result both in deformation of the package and in spalling and/or

total fracture of the concrete. Figures 47(a) and 03) show a reinforced concrete block,

approximately I. 5 meters on a side weighing 8200 kilograms, before and after impact.

It was impacted by a 0.61-meter-diameter sphere with a 1.59-centimeter-thick

304-stainless-steel shell containing a mockup of shielding materials. The sphere
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weighed 450 kilograms and impacted at about 300 meters per second. The concrete con-

rained reinforced steel. The impacted package, although severely deformed, did not

lose the integrity of its outer shell. The reinforced concrete block was totally destroyed.

A more detailed discussion is given in reference 22. Package impact on a steel surface

backed by concrete is another example of a hard-surface impact. Upon impact, the

package must absorb all the kinetic energy since the steel surface is essentially non-

yielding. Thus, the package deformation is more severe than for impact on concrete

since the total fracture of the concrete block is a form of energy absorption.

The impact of a hollow steel sphere on reinforced concrete at 120 meters per sec-

ond is described in reference 23. The sphere deformed and dimpled severely but did not

rupture. The PISCES 2DL computer code was used to analyze the deformation of the

sphere on impact and predicted it quite accurately (ref. 24).

The PISCES 2DL code was then used to simulate the impact of a contained waste dis°

posal package with dimensions similar to those of a single package for high Earth orbit

shown in table 19 (1) on a flat reinforced concrete surface (fig. 48) and (2) on a sharply

stepped reinforced concrete surface (fig. 49). It appears that at 322 meters per second

the package will survive impact on the flat concrete surface but that the impact shell

might be breached on an unyielding stepped surface.

To compare these simulations with experiment, figure 50 shows the impact of a

2.61-meter-diameter package against a rock mounted upon a concrete block. Localized

deformation occurred at the rock with overall deformation as a result of the concrete

block backing the rock. Most impacts with sharp objects, however, are not as severe as

first thought since the sharp object is generally not supported and therefore cannot cause

a great deal of penetration before it begins to deform and loose its effectiveness.

One advantage of a hard-surface impact is that after the impact the package remains

on the Earth's surface. Figure 50 shows a package that impacted into a concrete block

and finally rested on the ground. In a soft surface the same impact would result in less

deformation but complete penetration into the surface.

DEPTH OF PENETRATION FOR SOFT SURFACE

Figure 51 shows the impact of a 0.61-meter-diameter model weighing 364 kilograms

on soil. The impact was at over 244 meters per second vertically downward into the

soil (ref. 25). In this case the package buried itself almost 4.6 meters into the soft.

This depth will vary for different softs. The soil in this case had a consistency of dense

clay. The depth of penetration can be calculated for various sized packages impacting at

different velocities. The empirical equation for predicting depth of penetration is pre-

sented in reference 21. Soil constants are given to various softs. For a spherical
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configuration the depth of the penetration "_is essentially proportional to its impact veloc-

ity and the square root of its weight per unit area.

No tests of impact on water have been conducted. This type of impact is considered

a soft impact with the package sinking to the bottom of the ocean, lake, or river.

CONDITION OF WASTE PACKAGE FOLLOWING IMPACT AND PENETRATION

The amount of deformation of the package depends on the type of surface it impacts

against and the package design itself. For instance, a hollow containment vessel will

deform more than one that has been designed with material inside the package that is

capable of absorbing some or all of the impact energy. Also, the hardness or yielding

characteristics of the surface the package impacts against have a great deal to do with

the amount of deformation. A steel surface backed by concrete is essentially unyielding.

Therefore, all the energy of impact must be absorbed by the package.

Shape

The final shape of the package may be measured by 5/1t (where 5 is defined as the

diameter of the vessel before impact minus the height of the vessel after impact and R

is the vessel radius before impact). Typical values of 5/R of 0.90 have been measured

for 0.6-meter-diameter spherical packages weighing 455 kilograms after impact at

300 meters per second against concrete. These packages contained energy-absorging

material such as metal saddles and granular salt between the central payload and the

containment vessel. For the package considered in this report the impact at 300 meters

per second against a concrete block would result in a final shape similar to that shown in

figure 52.

For a soil impact the amount of deformation will be less, as shown in figure 53. Its

condition is characterized by minor overall deformation but with localized indentations.

These indentations are a result of rocks in the soil that impact the package as it buries

itself.

Temperature and Pressure

Impacted packages must dissipate the heat of the decaying fission products after the

impact event. In a hard impact, the package remains on top of the surface of the Earth,

and the heat can be dissipated through natural convection and radiation. Radiation
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becomesthe major mode of heat removal when surface temperatures exceed 700 K. In a

soft impact, the heat is removed by conduction from the package to the surrounding soil.

Many soils are very poor conductors of heat, and the surface temperature of the package

will become quite high - approaching the melting point of the soil. At this point, the

conductivity of the soil will increase.

Typically, as the packages considered in this report reenter the Earth's atmosphere,

their surface temperatures will be higher than the environment at point of impact. After

impact these high surface temperatures result in heat transferred to the surrounding en-

vironment, and a surface cooling trend results. Later as the internal regions heat up,

the surface temperature increases. Figure 54 is a plot of the surface temperature from

reference 22 of a package after impact and burial into the Earth. The surface tempera-

ture initially shows a decrease since the heat is actually flowing into the surrounding

soil. After 2 hours the internal generated heat begins to reach the surface, the amount

of heat generated internally exceeds the amount being dissipated to the soil, and the sur-

face temperature begins to increase.

During the entire period the pressure due to alpha emissions (helium) from actinide

decay in and hydrogen release from hydride dissociation will increase with temperature.

Eventually, if the soil cannot conduct the heat away to balance that being generated, the

pressure-temperature relation will cause the vessel to fail. The waste products may or

may not escape. This area needs further calculation and confirming experimentation.
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TABLE 4. - CALCULATED MASSES OF ACTINIDE ISOTOPES PRESENT LN WASTES

GENERATED BY REPROCESSING OF SPENT FUEL FROM DIABLO CANYON

REFERENCE LIGHT-WATER REACTOR a

[Power, 30 MW/metrlc ton; burnup, 33 000 MW-days/metric ton; flux,

2.91×I013 neutrons/cm2-sec, i

Nuclide Charge Waste decays times (processed after 90 days), days

90 365 250

Th 228 0 1.27x10 -6

Th 229 6.06:<10 -8

Th 230 , 6.80x10 -6

Th TM 3.22x10 -10

Th 232 2.48×10 -4

Th 233 0

pa 231 2.03× 10-6

Pa 232 0

p_233 7.78x10 -8

Pa 234M 0

pa234 i 0

U232 i 1.17x10 -6

U 233 8.64x10 -6

IU TM [ 1.10xl0 -2

:U 235 3.30x104 3.98x101

U 236 0 2.04x101

U 237 0 8.22x10 -6

U 238 9.67x105 4.72x103

U 239 0 0

Np 236 0

NP 237 7.62><102

Np 238 3.52×10 -13

NP 239 7.48×10 -5

Pu 236 4.91×10 -6

_u 238 8.26xi0 -1

Pu 239 2.69;<101

Pu 240 1.08x101

Pu TM 5.07

Pu 242 1.75

Pu 243 0

Am TM 5.3_101

Am 242M 4.14x10 "1

Am 242 4, 97x10 "6

Am 243 9.04><101

Am TM 0

; Cm 242 5.83

Cm 243

Cm244 i 8.76x10 -2
3.09:< 101

Subtotal 1.00xl06 5.76,'<103

Total 1.00xl06 5.76x103

al_ta from ref. 6.

150 365 3552 36 525

Nuclide concentration g/metric ton of fuel

1.20x 10 -6

6.06x 10 -8

6.80x10 -6

1.61x10 "12

2.48x10 -4

0

2.03× 10 -6

0

1.71x10 -8

0

0

1.35xi0 -6

8.70x10 -6

I. 29x10 -2

3.98x 101

2.04x 101

1.73x10 -8

4.72x103

0

0

7.62><102

8.81×10 .22

7.48x10 -5

4.7L>xl0 -6

2.12

2.69x101

1. lflxl01

5.03

i. 75

0

5.30_101

4.14xlO -l

4.9Txl0 "6

9.04x i0 l

0

4.52

8.72><10 -2

3.07XlO 1

5.76><103

5.76-'<103

9.80x10 -7

6.06x 10 -8

6.84x 10 -6

1.61x10 -12

2.48×10 -4

0

2.03x 10"6

0

7.41×10 -11

0

0

1.96x 10 .6

8.72×10 -6

2.93×10 -2

3.98×101

2.04×101

4.47",<10 -18

4.72><103

0

0

7.62)<102

0

7.48xi0 -5

I 4.09x10 -6

4.76

2.69×101

1.17x101

4.87

i. 75

0

5.31×I01

4.13×10 -I

4.95><10 °6

9.05><10 l

0

1.81

8.61×10 -2

3.00xl01

5.76xi03

5.76xi03

1.58×10 -7

6.09×10 -8

1.28×10 -5

1.61×10 "12

2.54_10 -4

0

2.04_10 -6

0

5.17x10 -6

8.72><10 -6

4 53×10 -1

3.98×101

2.04_10 l

0

4.72×103

0

0

7.62×102

0

7.47x10 -5

4.58x10 -7

6.04

2.70_i01

2.03><101

3.02

1.75

0

5.43×101

3.96xi0 "I

4.75xi0 -6

9.03×I01

0

9.62xi0 -4

7.09xlO -2

2.13xi01

5.76x103

5.76x103

6.35x10 "8

6 37><10 -8

5'43x10-4 i
1.51x10 -12

3.06×10 -4

0

2.07×10 -6

0

2.37×10 -6

8.71×I0 "6

3.48

3.98×101

2.07x101

0

4.72×103

0

0

7.70×102

0

7.41×I0 -5

I. 43×i0 -15

3.07

2.77_I01

4.02xlO l

2.48× 10 "2

1.77

0

5.0(_101

2.63×10 -1

3.15><10 -6

8.96×101

0

6.32×10 -4

1.01×10 -2

6.77><10 -1

5 i 76x103

5.76×103

1.10_10 -11

9.00xl0 -8

h 59×10 -2

1.64y10 -12

8.85x10 -4

0

2.37)< I0 -6

0

lp

4.12×10 -10

8.68×10 -6

5.68

4.06×101

2.43)< I01

0

4.72×103

0

0

8.06×102

0

6.83xI0 -5

0

7.44xi0 -3

3.38×101

3.73×101

3.58)<10 -23

1.82

0

1.28×101

4.33×10 -3

5.20)<10 -8

8.26×101

0

I. 04><10 -5

3.4_< I 0 -11

7.32×10 -16

5.76x103

5.76×103
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TABLE 5. - CALCULATED RADIOACTIVITY OF ACTINIDE ISOTOPES PRESENT IN

WASTES GENERATED BY REPROCESSING OF SPENT FUEL FROM DIABLO

CANYON REFERENCE LIGHT-WATER REACTOR a

_Power, 30 MW/metric ton; burnup, 33 000 MW-days/metric ton; flux,

2.91xl0 -3 neutrons/cm2-sec. ]

Nuclide Charge Waste decay times (processed after 90 days), days

90 150 365 3652 36 525 365 250

Radioactivity, Ci/metric ton of fuel

Th 228 0 I. 05)<10 -3

Th 229 i. 30x10 -8

Th 230 1.32×10 -7

Th TM I. 70><10 -4

Th 232 2.71x10 -II

Th 233 0

Pa TM 9.69xi0 "8

Pa 232 0

pa233 i i. 59xi0 -3

Pa 234M 0

Pa TM 0

U 232 2.5@<I0 -5

IU 233 8.19xi0-8

U234 Jl 8"83x10-5
U 235 7 0 0 -4 8.52xi0 -7

U 236 0 1.29×10 -3

U 237 0 6.71xi0 -I

U 238 3.22xi0 "I 1.57><10 -3

U 239 0 0

NP 236 0

Np 237 5.37x10 "I

Np 238 9.19x10 -8

NP 239 1.74"<101

Pu 238 2.61xi0 -3

Pu 238 1.39xi01

Pu 239 i. 85

Pu 240 2.39

Pu TM 5.79x102

Pu 242 6.81×10 -3

Pu 243 0

Am TM 1, 72xi02

Am 242M 4 02

Am 242 4.02

Am 243 1.74><101

Am244 i 0

Cm 242 I. 93xi04

Cm 243 4, 03

Cm TM 2.5@<103

Subtotal 3.23x10 -I 2.26)<104

Total 3.23x10 "1 2.26x104

9.88x10 "4

1.3@<10 -8

1.32)<10 -7

8.52x10 "7

2.71x10 -11

0

9.69x10 -8

0

3.49)<10 -4

0

0

2.9@<10 -5

8.24x10 -8

7.99x10 -5

8.52><10 -7

1.29x10 -3

1.42x10 -3

1.57><10 -3

0

0

5.37_10 -1

2.3@<10 -16

1.74)<101

2.51x10 -3

3.57><101

1.85

2.43

5.74)<102

6.81x10 -3

0

1.72xi02

4.02

4.02

I. 74)<101

0

I. 5@<104

4.01

2.49xi03

8, 05><10 -4

1.3@<10 "8

1.33x10 -7

8.52x10 -7

2.72×10 -11

0

9.69)<10 -8

0

1.52x10 -8

0

0

4.2@<10 -5

8.26x10 -8

i. 81x10 -4

8.52xi0 -7

I. 29xi0 -3

3.65><10 "13

I. 57xi0 -3

0

0

5.37><10 -I

0

I. 74><101

2.18X10 -3

8.04x101

1.85

2.58

5.65)<102

6.81xi0 -3

0

1.72xi02

4.01

4.01

1.74>(101

0

I 6.0@<103

3.96

2.43×103

1.29x10 -4

1.3@<10 -8

2.49x10 -7

8.53x10 -7

2.77x10 -11

0

9.71x10 "8

0

1. llxlO -4

8.26×10 -8

2.8@<10 -3

8.53x10 -7

1.29x10 -3

0

1.57x10 -3

0

0

5.38×10 -1

0

1.74)<101

2.44x10 -4

1.02x102

1.66

4.48

3.44><102

6.82)<10 -3

0

I. 76x102

3.85

3.85

I. 74)<101

0

3.18

3.28

1.72x103

5.21×10 -5

1.36x10 -8

1.05><10 -5

8.54)<10 -7

3.35x10 -11

0

9.85><10 -8

0

I'

5.08x10 -5

8.26><10 -8

3.15,,'<10 -2

8.54>(10 -7

1.32xi0 -3

0

1.57)<10 -3

0

0

5.43x10 -1

0

1.72x101

7.6@<10 -14

5. 19×101

1.70

8.87

2.84

6, 92×10 .3

0

1.62:.<102

2.55

2.55

1.72x101

0

2.09

4.64)<10 -1

5.49"x 101

9.07x10 "9

1.93)<10 "8

3.08x10 -4

8.71x10 -7

9.68x10 -l 1

0

1.13><10 -7

0

8.83x10 -9

8.23×10 -8

4.14,'<10 -2

8.71xlO "7

1.54x10 -3

0

1.57x10 -3

0

0

5.68xi0 "I

0

I. 59)<101

0

I. 28xi0 -I

2.08

8.22

4.09)<10 -21

7, 09xlO -3

0

4.15><101

4.21×10 -2

4.21xl0 -2

1.59x101

0

3.46x10 -2

1.58×10 -9

5.92×10 "14

1,83×104 9.29><103 2.40xlO 3 3.25×102 8.4_<101

3.25><1021.83x104 9.29x103 2, 4@<103 8.45xi01

aData from ref. 6.
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TABLE 6. - CALCULATED THERMAL POWER OF ACTINIDF ISOTOPES PRESENT IN

WASTES GENERATED BY REPROCESSING OF SPEND FUEL FROM DIABLO

CANYON REFERENCE LIGHT-WATER REACTOR a

[Power, 30 MW/metric ton; burnup, 33 000 MW-days/metric ton; flux,

2.91xl013 neutrons/cm 2-sec. ]

Nuclide Charge

9O

Th 228 0 3.43xi0 "5

Th 229 3.92×i0 -I0

Th 230 3.73xi0 -9

Th TM 2.35xi0 -7

Th 232 6. 56×i0 "13

iTh 233 0

pa TM 2.96×i0 -9

Pa 232 ; 0

Pa 233 4.04)<10 "6

l_a234M 0

pa TM 0

U 232 8.01xl0 -7

U 233 2.36x10 -9

U TM 1.97X10 -6

U 235 1.96×i0-5 2,37xi0 -8

Waste decay times (processed after 90 days), days

150 365 3652 36 525

Thermal power, W/metric ton of fuel

3.24x10 -5 I 71×I0 -6

3.92×I0 -10 4. 12xl0 -10

3.74_I0 -9 2.98>10 -7

I. 18x10 "9 I. 18x10 -9

6. 56<10 -13 8. 10xl0 -13

0

3.01_10 -9

0

0

2.96xi0 -9

0

8.85><10 -7

0

0

9.29xi0 "7

2.40xi0 -9

2.30x10 -6

2.37xi0 -8

3.51x10 -5

3.04x10 -6

3.98xi0 -5

U 236 0 3.51x10 -5

U 237 0 1.44)<10 -3

U 238 8.15x10 -3 3.98×10 -5

2,64_<10 -5 4.24x10 -6

2.92×10 -10 3.94)<10 -10

3.75><10 -9 7.03x10 -9

1.18x10 -9 1.18×10 -9

6.57"x10 -13 6.71×10 -13

0 0

2.96×10 -9 2.96x10 -9

0 0

3.84,'< I0 -9 I

0

0 I -6
I. 35xi0 -6 3.55xi0

2.40x10 -9 2.40x10 -9

5.22xI0 -6 8.07'x i0 -5

2.37x10 "8 2.37×10 -8

3.51xi0 -5 3.51×I0 -5

7.83xi0 -16 0

3.98xi0 -5 3.98×I0 -5

I'

• 63× 10 -6

2.40×I0 -9

I 6. 19×I0 -4

2.37><10 -8

3, 57:<10 -5

0

3.98>10 -5

365 250

297,xi0 -I0

5.82xi0 "I0

8,71×10 -6

1.20x10 "9

2.34xI0 -12

0

3.45>:10 -9

0

it

2.83×10 -10

2.39x I0 -9

I. 13×10 -3

2.42×10 -8

4. 18×10 -5

0

3.98x10 -5

U 239 0 0

Np 236 0

Np 237 0

Np 238 4.72x10 -10

NP 239 i 5. 16×10 -2

i Pu 236 9.09x10 -5

Pu 238 4.62×10 -1

Pu 239 5. 13×10 .2

Pu 240 7.45,'<10 -2

Pu TM 2.40)<10 -2

Pu 242 2.01xl0 -4

l_ 243 0

Am TM 5.73

Am 242M 1. l_xl0 -3

Am 242 5.37Xl0 -3

Am 243 5.61x10 -I

Am TM 0

Cm 242 7. llxl02

Cm 243 1.47x10 -1

Cm244 ,r 8.75x101

Subtotal 8.17x10 -3 8.06×102

Total 8.17x10 -3 8.06x102

0

1.18×10 -18

5.16x10 -2

8.73x10 -5

1.18

5.13x10 -2

7.58×I0 -2

2.38xi0 -2

2.01×I0 -4

0

5.73

I. 14xlO -3

5.36xi0 -3

5.61xlO -I

0

5.15xlO 2

I. 47",<10 -I

8.79xi01

6.46)<102

6.46)<102

5.16xlO -2

7.57x10 -5

2.66

5. 13",<10 -2

8.04><10 -2

2.31xlO -2

2.01×10 "4

0

5.75

I. 14><10 -3

5.35_I0 -3

5.61xlO -I

0

2.21xlO 2

1.45xi0 -I

8.50xi0 I

3. l_xlO 2

3.15x102

f

5.16xi0 -2

8.48×i0 -6

3,38

5.15xi0 "2

1.39×10 -1

I, 43><10-2

2.01×I0 -4

0

5.87

I. l(b<lO -3

5.13×I0 -3

5.60xlO -I

0

i. 17×10 -1

i. 19xlO -I

6.03x101

7.06×101

7.06×101

5. II×I0 -2

2.64_i0 -15

I. 72

5.28× i0 -2

2, 76×10 -1

l 18×10 -4

2. 042:10 -4

0

5.41

7.27xi0 -4

3.41×10 -3

5, 56×10 -1

0

7.72x10 "2

1.69× 10 -2

1.92

l, OlxlO 1

l. Ol×101

4.71×10 -2

0

4. 16xlO -3

6.45><10 "2

2, 56xi0 -I

I. 70xlO -25

2.09×10 -4

0

I. 39

1.20x10 -5

5.63xi0 -5

5. 12x10 -I

0

I. 27xi0 -3

5.79xi0 -11

2.07XlO "15

2.27

2.27

aDatafrom ref. 6.

74



TABLE 7. - CALCULATED MASSES OF ACTINIDE ISOTOPES PRESENT IN WASTES GENERATED

BY REPROCESSING OF SPENT FUEL FROM ATOMICS INTERNATIONAL REFERENCE

OXIDE LIQUID-METAL-COOLED FAST-BREEDER REACTOR a

[Power, 58.23 MW/metric ton; burnup, 32 977 MW-days/metric ton; flux,

2.65x1015 neutrons/cm2-sec. ]

Nuclide ] Charge Waste decay times (processed after 30 days), days

I 30 365 1096 3652 36 525 365 250
Nuclide concentration, g/metrlc ton of fuel

Th 228 0 5.78x10 -7

Th 229 I. 20)<10 -8

Th 230 I. 89×10 -5

Th TM 5.74_10 -11

Th 232 I. 16×10 -6

Th 233 0

Pa TM 5.94><10 -7

Pa 232 5, 92)<10 -17

Pa 233 I. 32×10 -9

PR 234M 0

Pa TM 0

U 232 6.98×10 -7

U 233 [ 4.02×10 -6

U TM I 4, 23×10 -2

U 235 i. 46×103 7.10

U TM 0 1.88)<10 -I

U 237 0 5.23xi0 -4

U 138 9.20xi05 4.39×I03

U 139 0 0

N1236 7.05×10 -16

N[ 237 1.26xi02

N1238 _ 4, 54><10 -8

N1239 i 3.10xl0 -2

pu236 1 3.8t_10-6

Pu 238 9.40)<102 3.32

pu 239 4.69xi04 2.88×102

pu 240 1.88xi04 9.65)<101

pu TM 9.43×103 2.63×101

pu 242 3.17xi03 1.63×101

Pu 243 0 0

Am TM ! 4.84×102

Am 242M ! 8.91

Am 242 I. 07><10 -4

Am 243 2.58×102

Am TM 0

Cm242 I 1"98×101

Cm 243 I 8.40><10 -1

Cm TM I I. 53×101

Subtotal I. 00xl06 5.74xI03

Total I. 00xl06 5.74)<103

4.22x10 -7

1.20;<10 -8

1.91×10 -5

2.87><10 -13

1.17><10 -6

0

5.95x10 -7

0

2.75><10 -13

0

0

1.45x10 "6

4.02xlO -6'

i, 29×I0 -I

7.11

1.9Txl0 -l

6.00xl0 -19

4.39x103

0

0

1.2 "/'x102

0

2.13>:10 -4

3.09×10 -6

1.80><101

2.88×102

9.70x101

2.50)<101

1.63×101

0

4.84)<102

8.88

i. 07×10 -4

2.59x102

0

4.78

8.24)<10 -1

1.48x101

2.33×10 -7

1.20×10 -8

2.07.:10 -5

2.88×10 -13

1.18×10 -6

0

5.05><10 -7

0

2.56×10 -21

0

0

2.58×10 -6

4.02x10 "6

4.53x10 -1

7.13

2.17xlO -1

0

4.39:<103

0

0

1.28×102

0

2.13x10 -4

1.90xi0 -6

2.22x101

2.88×102

9.81xi01

2.25xi01

1.63x101

0

4.85)<102

8.80

1.06xlO -4

2.58)<102

0

2.3¢<10 -I

7, 89xi0 -I

I. 3"b< 101

1.06x10 -7

1.21xl0 "8

4.09×10 -5

2.90_10 -13

1.23×10 -5

0

5.95_I0 "7

0

'r

3.87xi0 -6

4,02×10 "6

1.63

7.18

2.8_i0 -1

0

4.39×103

0

0

1.34)<102

0

2.13×10 -4

3.46×i0 -7

2.15x10 l

2.88×102

1.01×102

1.55)<101

1,64)<101

0

4.87)<102

8.52

1.02x10 -4

2.57X102

0

2.06xlO -2

6.78×10 -1

1.05x101

4.76×10 -8

1.35x10 -8

1.98×i0 -3

3.20xi0 -13

3.21×i0 -6

0

6.01×10 -7

0

I

r
I. 78×I0 -6

4.02×10 -6

1.29×I01

7.91

1.27

0

4.39x103

0

0

1.96x102

0

2.11×10 -4

1.08×10 -16

1.23×101

2.9(_102

1.10xlO 2

1.28×10 -1

1.69x101

0

4.39×102

5.65

6.79×10 -5

2.55x102

0

1.36×10 -2

9.65×10 -2

3.33×10 -1

8.27x10 -12

2.70

6.64xi0 -2

6.21×10 -13

1.61×I0 -4

0

6.89×10 -7

0

3.09×10 -10

4.00xlO -6

2.92x101

1.54><101

1.09×101

0

4.39×I03

0

0

5. 17)<102

0

1.95xI0 -4

0

1.11×10 -I

3.02x102

1.01xl02

1.84)<10 "22

1.79×101

0

1,12×102

9.33×10 "2

1.12×10 -6

2.35x102

0

2.25>:10 -4

3.29>:10 -10

3.60xlO -16

5.7@(103 5.7@<103 5.7a_lO 3 5.74><103 5.7¢x103

5.74×1035.74><103 5.74x1035.7¢<103 5.74>(103

aDatafrom ref. 6.
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TABLE 8. - CALCULATED RADIOACTIVITY OF ACTINIDE ISOTOPES PRESENT IN WASTES

GENERATED BY RE PROCESSING OF SPENT FUEL FROM ATOMS INTERNATIONAL

REFERENCE OXIDE LIQUID-METAL-COOLED FAST-BREEDER REACTOR a

[Power, 58.23 MW/metrtc ton; burnup, 32 97'_ MW-days! metric ton: flux.

2.65-'<1015 neutrons/em2-sec. ]

Nuclide Charge Waste decay times (processed after 30 days), days

30 365 1096 3652 36 525 365 250

Radioactivity, Ci/metric ton of fuel

Th 28 0 4.74><10 -4

Th 229 2, 56x10 "9

Th 230 3.68×10 -7

Th TM 3.04x10 -5

Th 232 1.27",<10 -13

Th 233 0

PR TM 2.83xi0 -8

Pa 232 2.52><10 -11

Pa 233 2.69×10 -5

Pa 234M 0

Pa TM 0

U 232 1. 50><10 -5

U 233 3.81×10 -8

U TM ' P 2.62× 10 -4

U 235 3.12><10 -5 1.52×10 .7

U 236 0 1.20×10 -5

U 237 0 4.27x101

U 238 3.06×10 -1 1.46×10 -3

U 239 0 0

Np 236 4.26×10 -10

Np 237 8.91×10 -2

Np238 I 1.19

Np 239 7.22×103

pu 236 r 2.85x10 -3

Pu 238 i. 59><104 5.61x101

Pu 239 2.88x103 1.76×101

! Pu 240 4.14x103 2.13:<101

Pu TM 1.03xlO 6 3.00x103

Pu 242 1.2¢<101 6.36:<10 -2

pu 243 0 0

Am TM 1.5"/><103

Am 242M 8.67xi01

Am 242 8.67xi01

Am 243 4.96><101

Am TM 0

Cm 242 I 6.5S<104

i Cm 243

Cm244 I 3.86><101
1.24><103

Subtotal 1.10xl06 7.90)<104

Total I. 10"xi06 7.90_i04

3.47x10 -4

2.56-'<10 -9

3.71>:10 -7

1.52x10 -7

1.28:<I0 -13

0

2.83× 10 -8

0

5.62>:10 -9

0

0

3.10_10 -5

3.81:<10 -8

8.00x10 -4

1.52x10 -7

1.25x10 -5

4.90x10 -14

1.46><10 -3

0

0

8.96><10 -2

0

4.96×101

1.66:<10 -3

3.06><102

1.7Txl01

2.14><101

2.86x 103

6.36:<10 -2

0

1.57:<103

8.63><101

8.68×I01

4.96)<101

0

I. 58x104

3.79x101

1.20x103

2.21:<104

2.21x104

I. 91xlO -4

2.57)<10 -9

4.02xlO -7

1. 53×10 -7

I. 29",<10 "13

0

2.83x 10 -8

0

5.23x10 -17

0

0

5.52>(10 -5

3.81x10 -8

2.80x10 -3

1.53x10 -7

1.38x10 -5

0

1.46×10 -3

0

0

9.06×10 -2

0

4.95,'<101

1.01×10 `3

3.75×102

1.77)<101

2.16x101

2.5"b< 103

6.37x10 -2

0

i. 57",<103

8.5_<101

8, 55)<101

4.95xi01

0

7.74x102

3.63×101

1.11:<103

6.74X103

6.74_103

8.71×I0 -5

2.59x10 -9

7.94><10 "7

I. 54)<10 "7

1.35xi0 "13

0

2.84x10 "8

0

i

I

8.29×10 -5

3.81×10 .8

1.01×10 "2

1. 54><10 -7

1.82"t 10 -5

0

1.46:_ 10 -3

0

0

9.42><10 -2

0

4.95_101

I. 84><10 "4

3.62×102

1.7_<, 101

2.23×101

1.77x103

6.39×10 -2

0

1.58;<103

8.28×101

8.28:<101

4.95><101

0

6.82×101

3.12><101

8.48:<102

4.96×103

4.96×103

3.91×I0 -5

2.00> 10"9

3.85×10 -5

1.70"-'10 -7

3.51_ 10 "13

0

2.88:_ 10 -8

0

I
3.80_ i0 -5

3.8bI0 "8

B. 01"×10 -2

I. 79×10 "7

8.04>10 -5

0

I. 46> 10 -3

0

0

1.38> 10 -1

0

4.91×101

5.73:' 10 -14

2.87:,102

1. 78:_ 101

2.43,'<101

I. 46×101

6.59×I0 -2

0

I, 42>103

5.50>101

5, 50"_lO 1

4.91_ I01

0

4. 51> i01

4, 44

2.70>101

t.9%103

1.97>103

6.80". 10 -9

5.77> 10-9

1.29_- 10 -3

3.29> 10 -7

1, 76", 10 "11

0

3.28y10 -8

0

6.62_ 10 -9

3. 79:, I0 -8

I. 81xi0 .1

3.29xi0 -7

6.89> 10 -4

0

I. 46× I 0"3

0

0

3.65_ 10 -1

0

4. 53>101

0

1.88

I. 85_:I01

2.22"/101

2. t(_J 10 -20

6.97> 10 -2

0

3.64>" 102

9. 07> l0 -1

9.07"_ 10 -1

4. 53×101

0

7. 44:tl 0 -1

I. 52y10 -8

2.91_I0 "14

5.01- 102

5.01> 102

aDam from ref. 6.
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TABLE 9. - CALCULATED THERMAL POWER OF ACTINIDE ISOTOPES PRESENT IN WASTES

GENERATED BY RE PROCESSING OF SPENT FUEL FROM ATOMICS INTERNATIONAL

REFERENCE OXIDE LIQUID-METAL-COOLED FAST-BREEDER REACTOR a

[Power. 58.23 MW metric ton; burnup. 32 977 /_'-days metric ton: flux.

2.65>'1015 neutrons cm2-sec. ]

Nuclide Charge Waste decay times (processed after 30 days), days

30 365 1096 3652 36 525 365 250

Thermal power. W/metric ton of fuel

Th 228 0 I. 55xi0 "5

Th 229 7.74><10 -11

Th 230 I. 04><10 -8

iTh TM 4_ 20><10 -8

Th 232 3.08x10 -15

Th 233 0

Pa TM 8, 64x10 -I0

iPa 232 8.38x10 -14

Pa 233 6.84xI0 -8

Pa 234M 0

Pa TM 0

U 232 4.80x10 -7

U 233 1. 11×10 -9

U TM " 7.53×10 -6

U 235 6.67×10 -7 4.22xi0 -9

U 236 0 3.24xI0 -7

U 237 0 9.17xl0 "2

U 238 7.75><10 -3 3.70xl0 -5

U 239 0 0

Np 236 1.20x10 -12

Np 237 0

Np 238 6.13×I0 -3

Np 239 2.14xl0 l

pu 236 I' 7. 14)<10 -5

Pu 238 5.26x102 1.66

Pu 239 8,95x101 5.48x10 -1

pu 240 1.29x102 6.63x10 -1

pu TM 4.4,'h<101 1,24xI0 -I

pu 242 3.65><10 -1 1.88×10 -3

Pu 243 0 0

Am TM 5.23x101

Am 242M 2.47x10 -2

Am 242 1.16×10 -1

Am 243 1.60

Am TM 0

Cm 242 2.42x103

Cm 243 1.41

Cm TM 1' 4.34)<101

Subtotal 7,89xi02 2.54xi03

Total 7.89×I02 2.54><103

1.14><10 "5

7.75×10 -11

1.05x10 -8

2.10xl0 "10

3.09x10 -15

0

8, 65><10 -10

0

1 43×10 -11

0

0

9.94><10 -7

1.11×10 -9

2.30><10 -5

4.23x10 -9

3.39×10 -7

1.05><10 -16

3.70x10 -5

0

'r

1.47x10 -1

5.71×10 -5

1.01xl01

5, 48x10 -1

6.67x10 -I

1. 18x10 -1

1.88× 10 -3

0

5.24><101

2.46><10 -2

1. 15x10 "1

1.60

0

5, 83×102

1 38

4.19x101

6.27x10 "6

7. 77x10 "11

1. 14x10 -8

2. 11×10 -10

3. 12x10 -15

0

8.65×10 "10

0

1.33×10 -19

0

0

1.77x10 -6

1. llxl0 -9

8.07><10 -5

4.2¢<10 .9

3.73x10 -7

0

3.7(b< i0 -5

0

r
1.4Txl0 -1

3, 51x10 -5

1.24><101

5m 49x10 -1

61 74><10 -1

1.06×10 -1

I.88x I0-3

0

5.25xI01

2.43×I0 "2

I. 14><10-l

1.60

0

2.8_101

1 32

3.88x101

2185)<10 -6

7184><10 -11

2.25x10 "8

2113)<10 "10

3.26x10 "15

0

8.65_10 -10

0

2.66x10 -6

1. 11×10 -9

2.90x10 -4

4.27x 10 -9

4.94>(10 -7

0

3, 70xlO -5

0

I. 47",<10-1

6.40><10 -6

I. 20_I01

5 m49xi0 -I

5.95)<10 -I

7.33",<10 -2

1.89×10 -3

0

5.27_101

2.36x10 -2

1. 10x10 -1

1.60

0

2.51

1.14

2.9'b< 101

I. 28> 10 -6

8.75xi0 "II

I. 09×10 -6

2.34>I0 "I0

6.50> 10 -15

0

8.73x10 -10

0

1'

1122×10 "6

1. llxl0 -9

2.30x10 -3

4.70x10 -9

2.18×10 -6

0

3170xlO -5

0

lr

I. 46×10 -1

1.99x10 "15

6.86

5.53x10 "1

7.57x10 -1

6, 04x10 -4

1,95><10 -3

0

4. 74><101

11 56×10 -2

7, 33x10 -2

1.58

0

1 69

1.62)<10 -1

9.45>(10 -1

2.23×10 -10

1.74x10 "10

3.65><10 "5

4.55x10 "10

4.25x10 -13

0

1.00xl0 -9

0

) 2.12xlO -10

1. lOxlO "9

5.21xlO -3

9.13xlO -9

1.87x10 -5

0

) 3.70",<10 -5

0

1.34x10 -1

0

6.23x10 -2

5.76x10 -1

6.92><10 -1

8, 71x10 -25

2.06x10 -3

0

1.22x101

2.58×10 -4

1.21×10 -3

1.46

0

2.74x10 "2

5.53×10 "10

1.02><10 -15

6.92×102 1.Y'h<102 1.01xl02 6.02x101 1.51x101

1.37x102 1.01xl026.92×102 6.02x101 1.51×101

aDam from reI. 6.
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Package type

TABLE 10. - COMPOSITIONS OF RADIOACTIVE NUCLEAR WASTE

CONSIDERED FOR SPACE DISPOSAL FEASIBILITY STUDY

[All waste assumed to be stored for 10 years prior to space disposal. ]

Radioactive waste

lib

IIIa

IIlb

Fission products only, in

solid form

Actinides (uranium removed)

with 1 percent of fission

products remaining

Actinides (uranium removed)

with 0. 1 percent of fission

products remaining

Actinides (uranium removed)

with 0. 001 percent of fis-

sion products remaining

IIIa with 99 percent of

curium removed

LWR]LMFBR LWR] LMFBR

Activity,

Ci/g

9.06 8.03

4. I0 5.95

2.62 3.96

2.40 3.73

• 67 3.02

Thermal power,

w/g

0. 029 0. 023

• 058 .065

.067 .074

.071 .076

.011 .051

TABLE II. - RADIOACTIVE WASTE WITH LONG

DECAY TIMES

Half-life, Decay processes

yr

Isotope

H 3

Sr 90

Tc 90

i129

Cs 137

Sm 151

pu 239

Np 237

Am 241

Am 243

Cm TM

12.3

27.7

2×105

1.6×107

30

87

2.4'<104

2.1×106

458

7.6X103

18

Beta (electron)

Beta (electron)

Beta (electron)

Beta (electron), gamma ray

Beta (electron), gamma ray

Beta (electron),gamma ray

Alpha (He) particle, gamma ray
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TABLE 12. - ACCUMULATED RADIOACTIVE DOSES FROM

LONG-LIVED ISOTOPES IN NUCLEAR WASTE

Isotope Maximum permissible total

body dose

H 3

Sr 90

Tc 99

i129

Cs 137

Sm TM

pu 239

Am 241

Am 243

i Cm TM

pCi g/body

2x103 2x10 -7

1 .7><10-8

5 2.5x10 -4

3 0.033

30 3 4)<10-7

I00 3.7xi0 "6

0.04 I.3x10 -7

•05 3x10 -8

•10 5.2x10 -7

•i0 I.25><10-9

Accumulated number of body

doses to the year 2000

9×1014

5><1015

ixl0 II

2x1014

5><1014

5><1013

3×1013

ixl015

ixl014

2><1015
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TABLE 13. - SUMMARY OF DESTINATIONS

Destimd Jim

High Earth orbit

Solar orbit

Solar system

escape

Solar impact

Type of mission

Direct - second burn

to circular orbit

Single burn beyond

Earth escape

Hohmann transfer to

circular solar orbit

(0.9 AU)

Velocity

increment.

-_V,

km sec

4.11

3.65

4.11

Advantage s

Low &V

Launch any day

Passive waste package

Can be retrieved

Low AV

Launch any day

Passive waste package

Low &V

Launch any day

Venus or Mars swing-by 4. 11 Low 5V

a75

7.01

24.08

7.62

Direct

Jupiter swing-by

Direct

Jupiter swing-by

Launch any day

Passive waste package

Removed from solar system

Removed from solar system

Package destroyed

Launch any day

Passive waste package

Package destroyed

Disadvantages

Long-term container integrity required

Orbit lifetime not proven

Earth reencounter possible (may not be

able to prove otherwise)

Abort gap past Earth-escape velocity

Orbit stabilitynot proven

Requires space propulsion system

Abort gap past Earth-escape velocity

Limited launch opportunity

Requires midcourse systems

Need space propulsion or have pos-

sibilityof planet encounter

High AV

Abort gap past Earth-escape velocity

High .._V

Limited launch opportunity

Requires midcourse systems

Abort gap past Earth-escape velocity

Extremely high &V

Abort gap l_)_st Earth-escape velocity

High ..XV

Lint}ted }aunch opportunity

Requires midcuurse systems

Abort gap past Earth-escape velt)('ity

TABLE 14. - EXPENDABLE LAUNCH VEHICLE PERFORMANCE AND

COST SUMMARY FOR CANDIDATE MISSION DESTINATIONS

Launch vehicle

Titan IIIE/Centaur

Saturn V

Saturn V/Centaur

High Earth orbits and

solar orbits

(AV a = 4. 11 kin/see)

Direct solar system

escape

(Alla = 8.75 km/sec)

Payload, kg

3 860

32 660

35 290

0

0

7480

Launch cost,

dollars

19xl06

150

155

aAbove 300-km parking orbit.
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TABLE 15. - SPACE SHUTTLE/THIRD STAGE

LAUNCH VEHICLE PAYLOAD AND COST

SUMMARY FOR HIGH EARTH ORBITS

AND SOLAR ORBITS

[Velocity increment, AV, 4. 11 km/sec. ]

Launch Vehicle, Payload, Launch cost,

Space Shuttle plus- kg dollars

Reusable tug:

Current size

Optimum size

Centaur:

Current size

Optimum size

4170

4670

6490

8480

12.25><106

12.25

16

16.3

TABLE 16. - LAUNCH VEHICLE PAYLOAD AND

COST SUMMARY FOR HIGH EARTH

ORBITS AND SOLAR ORBITS

[Velocity increments, AV, 4.11 km/sec. ]

Launch vehicle

Tital IIIE/Centaur

Saturn V

Saturn V/Centaur

Space Shuttle plus-

Reusable tug (current size)

Reusable tug (optimum size)

Centaur (current size)

Centaur (optimum size)

3 860

32 660

35 290

4 170

4 670

6 490

8 480

Launch cost

per kilogram

dollars

4920

4590

4390

2940

2620

2460

1920
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TABLE 17. - LAUNCH VEHICLE PAYLOAD AND COST SUMMARY FOR

DIRECT SOLAR ESCAPE MISSION

[Velocity increment, hV, 8.75 km/sec. ]

Launch vehicle

Saturn V/Centaur

(2, I, I) Space Shuttle/tug configurationa:

Without perigee propulsion

With perigee propulsion

(3, 1, 2) Space Shuttle/tug coafigurationb:

Without perigee propulsion

With perigee propulsion

Payload,

kg

7480

2270

3270

3040

4400

Launch cost,

dollars

155.00><106

28.75

28.75

41.0

41.0

Launch cost per

kilogram,

dollars

20 720

12 660

8 790

13 490

9 320

aTwo shuttle flights, one expendable tug, and one reusable tug.

bThree shuttle flights, one expendable tug, and two reusable tugs.

TABLE 18. - CHARACTERISTICS OF SPRAY MELT DESIGNED FOR

STORAGE OF FISSION PRODUCT WASTE ON EARTH

Form ............................ Single, tough mold

Hardness ................................. Hard

Leachability in water, g/cm2-day ................ 10 -3 to 10-6

Fission product oxides in mixture, mole percent .......... Up to 30

Thermal conductivity, W/m-K ................... 0.8 to 1.8

Density, g/cm 3 ........................... 2.7 to 3.5!

Maximum stable temperature, K ..................... ~ 1170!

Container material ................... Mild or stainless steel I

Maximum dose rate, Ci/cm 3 ~9!• • ° • • .... • ..............
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TABLE 19. - CHARACTERISTICS OF NUCLEAR WAST_ PACKAGE FOR SPACE DISPOSAL OF ACTINIDE WASTE

Characteristic

High Earth orbit

0.1 1.0

I 1

Percent of fission products remaining in actinides

Number of packages per launch

Dimensions of package:

Outside diameter, m 2. 896 2. 896

Thickness of stainless-steel shell, cm 0. 1 0. 1

Thickness of silica (front), cm 4.0 4.0

Thickness of silica (rear), cm 1.0 1.0

Thickness of silver reflector, cm 0.01 0.01

Thickness of graphite (front), cm 1.0 1.0

Thickness of graphite (rear), cm 0.5 0.5

Thickness of insulation (front). cm 2.0 2.0

Outside diameter of impact sphere, m 1.43 1.37

Thickness of stainless-steel impact shell, cm 2.54 2. 54

Thickness of LiH shield, cm 12.65 Ii.74

Thickness of W shield, cm 3.83 5.54

Offset of internal sphere forward of PAET shape center, cm 6.7 6.3

Weight of package, kg 8400 8400

Weight of actinides per package, kg 634 384

Weight of fission products per package, kg 22 134

Weight of reentry shield per package, kg 1038 I038

Weight of imlJact vessel per package, kg 1295 1122

Weight of LiH shield per package, kg 455 429

Weight of W shield per package, kg 2780 3580

Weight of matrix per package, kg 2080 1655

Dose rate at 1 meter from surface, rem/hr 1 1

Radioactivity from actinides per package b, Ci 1.52x106 0.92)<106

Radioactivity from fission products per package, Ci 0.20><108 1.20><106

Thermal power per package, kW 44.0 30.12

aRatio of package weight to total payload, kg.

Destination

Solar orbit Solar system escape

0.1 1.0

3 3

1. 761 1. 761

0.1 0.1

4.0 4.0

1.0 1.0

0.01 0.01

1.0 1.0

0.5 0.5

2.0! 2.0

0. 973 0. 923

2.54 2.54

9.83 8.28

3.61 4.84

3.7 3.5

a2800/8400 a2800/8400

149 96

5.2 34

370 370

565 504

168 113

1032 1249

498 415

1 l

0. 356)<106 O. 23XI06

O. 045:<106 0.3(_10 8

10.36 7.59

bBased on actinides from LWR's, from LMFBR's the radioactivity would be 1.5 times higher.

01 1.0

1 1

1.81 1.81

0.1 0.1

4.0 4.0

1.0 1.0

0.01 0.01

1.0 1.0

0.5 0.5

2.0 2.0

1. 036 0.98

2,54 2.54

i0. 51 8.75

3.60 4.92

3.9 3.7

3270 3270

191 113

6.7 40

415 415

640 567

178 135

llg0 1480

625 505

1 1

0.46X106 0.26x106

O. 06xlO 6 0.37)<106

13.25 9.26
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TABLE 20. - CHARACTERISTICS OF NUCLEAR WASTE PACKAGE IH

(FOR DISPOSAL OF PURE ACTINIDES)

[Shielded for external dose rate of 1 rem/hr at 1 m from surface. ]

Characteristic

Number of packages per payload

Dimensions of package:

Outside diameter, m

Thickness of stainless-steel shell,

Thickness of silica(front), cm

Thickness of silica(rear), cm

Thickness of silver reflector, cm

Thickness of graphite (front), cm

Thickness of graphite (rear), cm

Thickness of insulation, cm

am

Outside diameter, of impact sphere, m

Thickness of stainless-steel impact shell, cm

Thickness of LiH shield, cm

Thickness of W shield, cm

Weight of package, kg

Weight of actinide per package, kg

Weight of reentry shell per package, kg

Weight of impact shell per package, kg

Weight of LiH shield per package, kg

Weight of W shield per package, kg

Weight of matrix per package, kg

De stination

High Earth orbit Solar system escape

3 2

1. 761

0.1

4.0

1.0

0.01

1.0

0.5

2.0

1.09

2.54 (Split)

11.43

0.82

a2800/8400

1. 308

0.1

4.0

1.0

0.01

1.0

0.5

2.0

0.915

2.54

9.97

0.67

a1640/3280

286

370

591

248

316

900

154

241

423

148

174

495

aRatio of package weight to total payload.
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TABLE 21. - CALCULATED POSTIMPACT CONDITION OF NUCLEAR WASTE PACKAGE AFTER IMPACT ON EARTH

FOLLOWING UNCONTROLLED REENTRY

Thermal power, kW

Diameter of impact vessel, m

Maximum temperature of waste, K

Maximum temperature of impact vessel, K

Internal pressure, atm

Failure of vessel

Time to failure, days

Type of soil

Coastal plain

Condition of package

Podzol

Undeformed Deformed Undeformed Deformed Undeformed

Depth of burial

None 5.8 m 9.1 m None 10m 9.1 m 9.1 m

24 24 10 7 24 10 7

1.3 1.3 0.9 0.9 1.3 0.9 0.9

722 1523 1543 563 1553 1583 1501

686 1418 1433 548 1420 1420 1401

1.22 8.17 8.5 1.1 9.0 9.5 8.9

No Yes Yes No Yes Yes Yes

.... 4.5 4.3 --- 5.4 5.4 I0

37 Percent

24

1.3

820

786

1.43

No

TABLE 22. - SPACE TRANSPORTATION COST FOR DISPOSAL

OF RADIOACTIVE WASTE

[Basic launch vehicle, Space Shuttle; number of missions per

year, 40; cost basis, FY 1972 dollars. ]

Space transportation cost per payload,

dollars

Ground facilities for each flight

High Earth orbit:

Shuttle (1)

Optimum Centaur (1)

Total per mission

Solar system escape:

Shuttle (2)

Expendable tug (1)

Reusable tug (1)

Total per mission

O. 01×106

10.5xlO 6

5.8×10 6

16.31×106

21.0><106

6.0><106

1.75xi06

28.77Xi06
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TABLE 24. - COST SUMMARY FOR FISSION PRODUCT DISPOSAL (PACKAGE I) AS FUNCTION OF LAUNCH

VEHICLE AND MISSION

Representative

destination

Vehicle Waste

payload, a

kg

Radioactivity,

Ci

Additional cost of electricity

cents/kW-hr Percent of increase

High Earth or solar Saturn V 727 6.40x106 2.8 116

orbit Space Shuttle and optimum Centaur 189 I. 66 1.1 46

Solar system escape 161

73

Saturn V and Centaur

Space Shuttle (2) and tugs (2)

1.43×106

.64

aScreening studies did not account for reentry shells.

13

5.2

54O

217

TABLE 25. - COST SUMMARY FOR ACTINIDE DISPOSAL AS FUNCTION OF LAUNCH VEHICLE AND MISSION

(a) Aetinides with I percent residual fission products

Actinide

waste

pay load,

kg

a1365

b384

288

b341

113

Representative Launch system

destination

High Earth or solar Saturn V

orbit Space Shuttle and

optimum Centaur

Direct solar system Saturn V and Centaur

escape Space Shuttle(2)and tugs (2)

High Earth or solar

orbit

(b) Actinides with 0.1 percent

Saturn V a2000

Space Shuttle and 447

optimum Centaur

498

191

Direct solar system Saturn V and Centaur

escape Space Shuttle(2)and tugs (2)

High Earth or solar

orbit

(e) Actinides with O. 001 percent

Radioactivity,

Ci

Additional cost of electricity

cents/kW-hr Percent of increase

7.46×106 0.045 2

2.12 .017 <1

1.59 .023 1

1.86x106 0.186 8

.62 .104 4

residual fission products

5.43×106

1.2

0.03

• 015

I

<i

1.35)<106 0. 127 5

• 52 .061 3

of residual fission _roducts

Saturn V a~3000 7.20><106

Space Shuttle and 858 2.06

optimum Centaur

Direct solar system Saturn V and Centaur

escape Space Shuttle(2)and tugs (2)

740

308

0.020

.008

<I

<I

1.77x106 0.086 3

.74 .038 1.5

curium removed

0.018 <1

.007 <I

0.079 3

.034 1

(d) Actinides with 0. 001 percent of residual fission products

High Earth or solar Saturn V 3335 2.23><106

orbit Space Shuttle and 920 .62

optimum Centaur

Direct solar system Saturn V and Centaur 810 0.54xi06

escape Space Shuttle(2)and tugs (2) 348 .23

aFour packages - matrix temperature exceeded.

bone package - matrix temperature limit met or exceeded.
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Components

-- Waste

/ _/_.._'_. -Shleldlng

Nuclear waste package

Orblter-_\\ Solid rockets (2_
Liquid-propellant _ i_

_ .

Space Shuttle

\_.. .... / _.... j

I- ,.m i
Reusable space tug

t ~rim
Expendable space tug CD-I1509-31

Component Weight,

kg

Nuclear waste package:.

Waste (actinides plus 200

O. I percent of the

fission products)

Shielding (UH, W, matrix) I _5

Impact sphere 640

Reentry body (heat shield) 410

Adapter 120

Space Shuttle=.

Orbiter (dry weight) 68 000

Liquid propellant and tank 737 000
Solid rockets 1 030 000

Reusable space tug:
Propellant weight 23 900

Burnout weight 2 900

Expendable space tug:

Propellant weight 22 000

Burnout weight 2 900

Figure l. - Representative components for nuclear waste disposal mission to escape the solar system. Required for such a

mission: one Space Shuttle and a reusable tug; a second Space Shuttle and an expendable tug carrying the waste

package. Sequence of events:

(]) Launch shuttle 1 to 37D-kilometer parking orbiL
(2) Deploy reusable tug to rendezvous position.

(31 Launch shuttle 2 to 370-ki[orneter parking orbit.

(4) Deploy expendable tug and waste package to rendezvous with reusable tug.
(5) Maneuver tugs to dock in tandem configuration.

(6) Reusable tug fires to required &V, separates, and returns to shuttle ?.

(7) Expendable tug fires and injects waste package into solar system escape trajectory.
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(a) HighEarth orbit. Velocity incrementfrom low
earth orbit, z_V, 4.11 km/sec; singleshuttle
launch to 370-kmorbit; two burns to ~ 90 0O0-
kmcircular orbit (abovesynchronousorbit);
time betweenburns, - 20 hr.

First burn

._ Earth orbit

(b) Solar orbit to 0.9 AU. Velocity increment, I_V,
4.1] kmlsec; singleshuttle launch to 370-km or-
bit; two burns to circular solar orbit (0.9 or 1. !
AU); time betweenburns, ~ 6 months.
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and expendabletug,theothercarriesre-

usabletug_twoburnsatperigee;timebe-
tweenburns.-8 hr.

Figure4. - Potentialspacedestinations.
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Figure 7. - Upward fragment velocities from typical explosion in-

volving 11 250-kilogram propellant tank. Velocities measured
3 meters from top of dome. (Data from ref. 12. )

Liquid hydrogen-"

Payload bay

rbiter

,,4- Solid rockets
/'/
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Figure6. - SpaceShuttle launch vehicle.
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Figure8. - Heat flux causedbyatmosphericheating of reentr_ vehicle.
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Figure 10. -Typical container and shielding for space disposal
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Figure 13. - Packageouter diameteras function of doserate for packageI (fissionproducts).
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orbit.
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Figure]7. - Schematicof nuclear wastepackage.
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Figure 21. - Nuclear waste reentry package.
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Figure 22. - Layers of reentry shield for radioactive nuclear waste package.
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Figure 23. - Configuration of package II |actinlde waste with I percent of the fission

products) for disposal of single package,to high Earth orblt. Total weight, _00 kilograms.
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Figure 24. - Configuration of package II lactinide waste with O. 1 percent of the fission products)
for disposal of three packages to high Earth orbit or O.9-AU solar orbit. Weight per package,

2800 kilograms.
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Figure 25. - Configuration of packageII (actinide wastewith O.1 percent of the
fission products) for dis_sal of single packageto solar system escape. Total
weight, 3270kilograms.
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Figure 26. - Steady-statetemperature distribution for disposal of single nucl ear wastepackage
(packageII, actinides with I percent of the fission products) to high Earth orbit.
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Figure29.- SpaceShuttlelaunchfrequencyre-
quiredforspacedisposalofradioactiveadinides
containing0.001percentofthefissionproducts
withand withoutcuriumisotopes.Shieldedfor
I remfhr at [ meter from surface; lO-year
Earth storageassumed.

Figure 30. - Space Shuttle orbiter with nuclear waste package and tug.
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Figure 33. - Temperatures inside bayafter cooldcwnto 0° C and lift-off.
Thermal powerof nuclear package, ~25 kilowatfs.
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Figure 34. -Additional facilities and modifications to facilities required for spacedisposalof nuclear waste
as function of launch frequency. All costs are in 1971dollars andare :1:20percent.
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Figure37. - Once-aroundabortgroundtracksfor five launch azimuthsfrom ¢X)° to BO°.

10

0

"_ -10

t I I I I I I I

280 300 320 340 360 20 40 50

Longitude,deg

Figure38. - SpaceShuttle instantaneous impacttraces for typicaleasterlylaunch azimuths.
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Figure 39. - SpaceShuttle instantaneousimpacttraces for doglegtrajectory. Launch
azimuth, 97.50; final orbit inclination, 40u..
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Figure 40. - Temperatureofwastepackageduring solid-propellant fire.
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to value at launch (10yr after generationL

111



i010

__ i09_

Fission products

remaining in

act i; 'drece:_Ste, _///////////_

i _ .oot

lo7 I I I
1980 1990 2'000 2010

Year

Solar system

escape

High Earth
orbit or

solar orbit
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Figure 48. - Computer simulation of nuclear impact on reinforced concrete (smooth surface). Impact

velocity, 322 meters per second.

Figure 40. - Computer simulation of nuclear impact on reinforced concrete (stepped surfacel. Impac_

velocity. 322 meters per second.
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Figure 50. -Model of nuclear waste package remaining on Earth's
surface after hard-surface impact.

116

Figure 5].. - Penetration of Earth's surface by model of nuclear waste
package after soft-surface impact.
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Figure 52. -Model of once-spherical nuclear waste packacjeafter impact on hard surface

(concrete),
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Figure53, -Model of sphericalnuclear wastepackageafter impact
on soft surface(soil).
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Figure 54. - Surface and internal temperatures of nuclear wastepackageas function of time after impact and
burial in soil.
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